cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A217971 a(n) = 2^(2*n+1) * (2*n+1)*n^(2*n).

Original entry on oeis.org

24, 2560, 653184, 301989888, 220000000000, 231818611654656, 333360204766740480, 627189298506124754944, 1495163506861268427866112, 4404019200000000000000000000, 15705682358754099640245749284864, 66686788842514206222454073642188800, 332430457331186494783020411573611003904
Offset: 1

Views

Author

Keywords

Comments

Let S_(2*n+1)(m) denote difference between multiples of 2*n+1 in interval [0,m), m>=1, with even and odd digit sums in base 2*n. As is shown in the Shevelev and Moses link, a recursion for S_(2*n+1)(m) is connected with the periodicity of a special digit function, the smallest period of which is a(n).

Crossrefs

Programs

Extensions

Terms a(11) and beyond from Andrew Howroyd, Apr 28 2020

A218085 Let S_5(x) denote the difference in counts of multiples of 5 in the interval [0,x), those with even digit sums in base 4 in one set, those with odd digit sums in base 4 in the other. Then a(n) = (-1)^s_4(n) *(S_5(n) -10*S_5(floor(n/16)) +5*S_5(floor(n/256))), where s_4(n) = A053737(n).

Original entry on oeis.org

0, -1, 1, -1, -1, 1, -2, 2, 2, -2, 2, -3, -3, 3, -3, 3, 6, -6, 6, -6, -6, 5, -5, 5, 5, -5, 4, -4, -4, 4, -4, 3, -3, 3, -3, 3, 4, -4, 4, -4, -4, 3, -3, 3, 3, -3, 2, -2, 2, -2, 2, -3, -3, 3, -3, 3, 4, -4, 4, -4, -4, 3, -3, 3, 3, -3, 2, -2, -2, 2, -2, 1, 1, -1, 1, -1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

The sequence S_5(n) starts 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, ... for n >= 0. Apart from the initial 0, these are blocks of 5 repetitions of 1, 2, 3, 4, 5, 6, 7, 6, 7, 8, 7, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...
Theorem. The sequence is periodic with period 2560.
The theorem allows us to write a recursion for S_5(n), considering n modulo 2560: S_5(n) = 10*S_5(floor(n/16)) - 5*S_5(floor(n/256)) + (-1)^s_4(n)*a(n).

Examples

			a(n)=-9 for n=2411, 2412, 2414, 2491, 2492, 2494 (mod 2560);
a(n)=9 for n=2413, 2415, 2493, 2495 (mod 2560).
		

Crossrefs

Programs

  • Maple
    S := proc(n,j,x)
        a := 0 ;
        for r from j to x-1 by n do
            add(d,d=convert(r,base,n-1)) ;
            a := a+(-1)^% ;
        end do:
        a ;
    end proc:
    A218085 := proc(n)
        S(5,0,n)-10*S(5,0,floor(n/16))+5*S(5,0,floor(n/256)) ;
        %*(-1)^A053737(n) ;
    end proc:
    seq(A218085(n),n=0..80) ; # R. J. Mathar, Oct 31 2012

Formula

-9 <= a(n) <= 9, all 19 values are actually achieved.
Showing 1-2 of 2 results.