A214549 Decimal expansion of 4*Pi^2/27.
1, 4, 6, 2, 1, 6, 3, 6, 1, 4, 9, 7, 6, 2, 0, 1, 2, 7, 6, 8, 6, 4, 3, 6, 9, 0, 3, 7, 0, 1, 8, 6, 8, 9, 0, 5, 7, 0, 8, 3, 5, 1, 1, 0, 2, 3, 2, 9, 4, 9, 3, 1, 9, 4, 4, 6, 5, 3, 8, 2, 9, 5, 3, 7, 2, 1, 7, 7, 8, 4, 4, 1, 8, 1, 3, 6, 1, 7, 8, 5, 5, 4, 5, 1, 8, 7, 8, 1, 2, 4, 4, 9, 9
Offset: 1
Examples
1.4621636149762012768643690370186...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- R. J. Mathar, Table of Dirichlet L-Series, arXiv:1008.2547 [math.NT], 2010-2015, Table 22.
- Index entries for transcendental numbers.
Programs
-
Julia
using Nemo R = RealField(310) t = const_pi(RR) + const_pi(RR); s = t * t s / RR(27) |> println # Peter Luschny, Mar 13 2018
-
Magma
R:= RealField(); 4*Pi(R)^2/27; // G. C. Greubel, Mar 08 2018
-
Magma
R:=RealField(106); SetDefaultRealField(R); n:=4*Pi(R)^2/27; Reverse(Intseq(Floor(10^105*n))); // Bruno Berselli, Mar 13 2018
-
Maple
evalf(4*Pi^2/27) ;
-
Mathematica
RealDigits[(4Pi^2)/27,10,120][[1]] (* Harvey P. Dale, Dec 20 2012 *)
-
PARI
4*Pi^2/27 \\ G. C. Greubel, Mar 08 2018
Formula
Equals (4/3)*A100044.
Equals Sum_{n>=0} (1/(3*n+1)^2 + 1/(3*n+2)^2).
From Peter Luschny, May 13 2020: (Start)
Equals (8/9) * Sum_(k>=1) 1/k^2 =8/9 *A013661.
Equals -(16/9) * Sum_(k>=1) (-1)^k/k^2 = -16/9 * A072691.
Equals (64/27) * ( Integral_{x=0..1} sqrt(1 - x^2) )^2 = 64/27 * A091476. (End)
Equals Integral_{x=0..oo} log(x)/(x^3 - 1) dx. - Amiram Eldar, Aug 12 2020
Comments