cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214549 Decimal expansion of 4*Pi^2/27.

Original entry on oeis.org

1, 4, 6, 2, 1, 6, 3, 6, 1, 4, 9, 7, 6, 2, 0, 1, 2, 7, 6, 8, 6, 4, 3, 6, 9, 0, 3, 7, 0, 1, 8, 6, 8, 9, 0, 5, 7, 0, 8, 3, 5, 1, 1, 0, 2, 3, 2, 9, 4, 9, 3, 1, 9, 4, 4, 6, 5, 3, 8, 2, 9, 5, 3, 7, 2, 1, 7, 7, 8, 4, 4, 1, 8, 1, 3, 6, 1, 7, 8, 5, 5, 4, 5, 1, 8, 7, 8, 1, 2, 4, 4, 9, 9
Offset: 1

Views

Author

R. J. Mathar, Jul 20 2012

Keywords

Comments

Represents the value of the Dirichlet series for A011655 (principal Dirichlet character mod 3) at s=2.
Equals the asymptotic mean of the abundancy index of the numbers that are not divisible by 3 (A001651). - Amiram Eldar, May 12 2023

Examples

			1.4621636149762012768643690370186...
		

Crossrefs

Programs

  • Julia
    using Nemo
    R = RealField(310)
    t = const_pi(RR) + const_pi(RR); s = t * t
    s / RR(27) |> println # Peter Luschny, Mar 13 2018
  • Magma
    R:= RealField(); 4*Pi(R)^2/27; // G. C. Greubel, Mar 08 2018
    
  • Magma
    R:=RealField(106); SetDefaultRealField(R); n:=4*Pi(R)^2/27; Reverse(Intseq(Floor(10^105*n))); // Bruno Berselli, Mar 13 2018
    
  • Maple
    evalf(4*Pi^2/27) ;
  • Mathematica
    RealDigits[(4Pi^2)/27,10,120][[1]] (* Harvey P. Dale, Dec 20 2012 *)
  • PARI
    4*Pi^2/27 \\ G. C. Greubel, Mar 08 2018
    

Formula

Equals (4/3)*A100044.
Equals Sum_{n>=0} (1/(3*n+1)^2 + 1/(3*n+2)^2).
From Peter Luschny, May 13 2020: (Start)
Equals (8/9) * Sum_(k>=1) 1/k^2 =8/9 *A013661.
Equals -(16/9) * Sum_(k>=1) (-1)^k/k^2 = -16/9 * A072691.
Equals (64/27) * ( Integral_{x=0..1} sqrt(1 - x^2) )^2 = 64/27 * A091476. (End)
Equals Integral_{x=0..oo} log(x)/(x^3 - 1) dx. - Amiram Eldar, Aug 12 2020