A214559 Subsequence of fixed points A099009 of the Kaprekar mapping with numbers of the form 9(x1+1)//8(x2)//7(x3+1)//6(x2)//5(x3+1)//4(x2)//3(x4)//2(x2)//1(x3)//0//9(x2)//8(x3+1)//7(x2)//6(x4)//5(x2)//4(x3+1)//3(x2)//2(x3+1)//1(x2)//0(x1)//1.
97508421, 9753086421, 9975084201, 975330866421, 997530864201, 999750842001, 97533308666421, 97755108844221, 99753308664201, 99975308642001, 99997508420001, 9753333086666421, 9775531088644221, 9975333086664201, 9977551088442201, 9997533086642001, 9999753086420001
Offset: 0
Examples
9753086421 is a fixed point of the mapping for x1=0, x2=0, x3=0, x4=1.
Links
- Syed Iddi Hasan, Table of n, a(n) for n = 0..9554
Formula
If d(x) denotes x repetitions of the digit d, then a(n)=9(x1+1)8(x2)7(x3+1)6(x2)5(x3+1)4(x2)3(x4)2(x2)1(x3)09(x2)8(x3+1)7(x2)6(x4)5(x2)4(x3+1)3(x2)2(x3+1)1(x2)0(x1)1, where x1,x2,x3,x4>=0.
Extensions
More terms using b-file by Michel Marcus, Mar 27 2015
Comments