A214560 Number of 0's in binary expansion of n^2.
1, 0, 2, 2, 4, 2, 4, 3, 6, 4, 4, 2, 6, 4, 5, 4, 8, 6, 6, 4, 6, 3, 4, 7, 8, 5, 6, 4, 7, 5, 6, 5, 10, 8, 8, 6, 8, 5, 6, 4, 8, 6, 5, 4, 6, 3, 9, 8, 10, 7, 7, 7, 8, 4, 6, 5, 9, 6, 7, 5, 8, 6, 7, 6, 12, 10, 10, 8, 10, 7, 8, 6, 10, 7, 7, 4, 8, 6, 6, 8, 10, 7, 8, 5, 7
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a214560 = a023416 . a000290 -- Reinhard Zumkeller, Nov 20 2013
-
Maple
A214560 := proc(n) A023416(n^2) ; end proc: # R. J. Mathar, Jul 21 2012 # second Maple program: a:= n-> `if`(n=0, 1, add(1-i, i=Bits[Split](n^2))): seq(a(n), n=0..84); # Alois P. Heinz, Nov 25 2024
-
Mathematica
Join[{1},Table[DigitCount[n^2,2,0],{n,100}]] (* Harvey P. Dale, Nov 24 2024 *)
-
PARI
vector(66,n,b=binary((n-1)^2);sum(j=1,#b,1-b[j])) /* Joerg Arndt, Jul 21 2012 */
-
Python
for n in range(300): b = n*n c = 0 while b>0: c += 1-(b&1) b//=2 print(c+(n==0), end=', ')
-
Python
def A214560(n): return bin(n*n)[2:].count('0') # Chai Wah Wu, Sep 03 2014
Comments