A214604 Odd numbers by transposing the right half of A176271, triangle read by rows: T(n,k) = A176271(n - 1 + k, n), 1 <= k <= n.
1, 5, 9, 11, 17, 25, 19, 27, 37, 49, 29, 39, 51, 65, 81, 41, 53, 67, 83, 101, 121, 55, 69, 85, 103, 123, 145, 169, 71, 87, 105, 125, 147, 171, 197, 225, 89, 107, 127, 149, 173, 199, 227, 257, 289, 109, 129, 151, 175, 201, 229, 259, 291, 325, 361, 131, 153, 177, 203, 231, 261, 293, 327, 363, 401, 441
Offset: 1
Examples
. Take the first n elements of the n-th diagonal (northeast to . southwest) of the triangle on the left side . and write this as n-th row on the triangle of the right side. . 1: 1 1 . 2: _ 5 5 9 . 3: _ 9 11 11 17 25 . 4: __ __ 17 19 19 27 37 49 . 5: __ __ 25 27 29 29 39 51 65 .. . 6: __ __ __ 37 39 41 41 53 67 .. .. .. . 7: __ __ __ 49 51 53 55 55 69 .. .. .. .. .. . 8: __ __ __ __ 65 67 69 71 71 .. .. .. .. .. .. .. .
Links
- Reinhard Zumkeller, Rows n = 1..150 of triangle, flattened
Crossrefs
Programs
-
Haskell
import Data.List (transpose) a214604 n k = a214604_tabl !! (n-1) !! (k-1) a214604_row n = a214604_tabl !! (n-1) a214604_tabl = zipWith take [1..] $ transpose a176271_tabl
-
Magma
[(n+k)^2-n-3*k+1: k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 10 2024
-
Mathematica
Table[(n+k)^2-n-3*k+1, {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 10 2024 *)
-
SageMath
flatten([[(n+k)^2-n-3*k+1 for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 10 2024