A214656 Floor of the imaginary part of the zeros of the complex Fibonacci function on the left half-plane.
0, 0, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11, 12, 12, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 26, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 38, 38, 39
Offset: 0
Keywords
References
- Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Programs
-
Magma
R:= RealField(100); [Floor(4*n*Pi(R)*Log((1+Sqrt(5))/2)/(Pi(R)^2 + (2*Log((1+Sqrt(5))/2))^2)) : n in [0..100]]; // G. C. Greubel, Mar 09 2024
-
Mathematica
a[n_]:= Floor[4*n*Pi*Log[GoldenRatio]/(Pi^2 + 4*Log[GoldenRatio]^2)]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Jul 03 2013 *)
-
PARI
A214656(n,phi=(sqrt(5)+1)/2)=n*4*Pi*log(phi)\(Pi^2+(2*log(phi))^2) \\ M. F. Hasler, Jul 24 2012
-
SageMath
[floor(4*n*pi*log(golden_ratio)/(pi^2 +4*(log(golden_ratio))^2)) for n in range(101)] # G. C. Greubel, Mar 09 2024
Formula
a(n) = floor(b*n), n>=0, with b = -y_0(1) = 4*Pi*log(phi)/(Pi^2 + (2*log(phi))^2).
Comments