cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214659 a(n) = n*(7*n^2 - 3*n - 1)/3.

Original entry on oeis.org

0, 1, 14, 53, 132, 265, 466, 749, 1128, 1617, 2230, 2981, 3884, 4953, 6202, 7645, 9296, 11169, 13278, 15637, 18260, 21161, 24354, 27853, 31672, 35825, 40326, 45189, 50428, 56057, 62090, 68541, 75424, 82753, 90542, 98805, 107556, 116809, 126578, 136877
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 25 2012

Keywords

Comments

a(n) = the sum of the n X n matrices of A204008. For example, for n = 3, the sum of the 9 elements of the 3 X 3 submatrix of A204008 is 1 + 4 + 7 + 4 + 5 + 8 + 7 + 8 + 9 = 53. - J. M. Bergot, Jul 15 2013

Crossrefs

Programs

  • Haskell
    a214659 n = ((7 * n - 3) * n - 1) * n `div` 3
    
  • Magma
    [(7*n^3-3*n^2-n)/3 : n in [0..50]]; // Wesley Ivan Hurt, Apr 11 2015
    
  • Maple
    A214659:=n->(7*n^3-3*n^2-n)/3: seq(A214659(n), n=0..50); # Wesley Ivan Hurt, Apr 11 2015
  • Mathematica
    Table[(7 n^3 -3 n^2 -n)/3, {n,0,50}] (* Wesley Ivan Hurt, Apr 11 2015 *)
    LinearRecurrence[{4,-6,4,-1}, {0,1,14,53}, 51] (* G. C. Greubel, Mar 09 2024 *)
  • SageMath
    [(7*n^3-3*n^2-n)/3 for n in range(51)] # G. C. Greubel, Mar 09 2024

Formula

a(n) = Sum_{k=0..n} A214604(n, k) for n > 0 (row sums).
a(n) = A002378(n) + A051673(n).
From Wesley Ivan Hurt, Apr 11 2015: (Start)
a(n) = (7*n^3 - 3*n^2 - n)/3.
G.f.: x*(1+10*x+3*x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
E.g.f.: (x/3)*(3 + 18*x + 7*x^2)*exp(x). - G. C. Greubel, Mar 09 2024