A214659 a(n) = n*(7*n^2 - 3*n - 1)/3.
0, 1, 14, 53, 132, 265, 466, 749, 1128, 1617, 2230, 2981, 3884, 4953, 6202, 7645, 9296, 11169, 13278, 15637, 18260, 21161, 24354, 27853, 31672, 35825, 40326, 45189, 50428, 56057, 62090, 68541, 75424, 82753, 90542, 98805, 107556, 116809, 126578, 136877
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Haskell
a214659 n = ((7 * n - 3) * n - 1) * n `div` 3
-
Magma
[(7*n^3-3*n^2-n)/3 : n in [0..50]]; // Wesley Ivan Hurt, Apr 11 2015
-
Maple
A214659:=n->(7*n^3-3*n^2-n)/3: seq(A214659(n), n=0..50); # Wesley Ivan Hurt, Apr 11 2015
-
Mathematica
Table[(7 n^3 -3 n^2 -n)/3, {n,0,50}] (* Wesley Ivan Hurt, Apr 11 2015 *) LinearRecurrence[{4,-6,4,-1}, {0,1,14,53}, 51] (* G. C. Greubel, Mar 09 2024 *)
-
SageMath
[(7*n^3-3*n^2-n)/3 for n in range(51)] # G. C. Greubel, Mar 09 2024
Formula
a(n) = Sum_{k=0..n} A214604(n, k) for n > 0 (row sums).
From Wesley Ivan Hurt, Apr 11 2015: (Start)
a(n) = (7*n^3 - 3*n^2 - n)/3.
G.f.: x*(1+10*x+3*x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
E.g.f.: (x/3)*(3 + 18*x + 7*x^2)*exp(x). - G. C. Greubel, Mar 09 2024
Comments