A214660 a(n) = 9*n^2 - 11*n + 3.
1, 17, 51, 103, 173, 261, 367, 491, 633, 793, 971, 1167, 1381, 1613, 1863, 2131, 2417, 2721, 3043, 3383, 3741, 4117, 4511, 4923, 5353, 5801, 6267, 6751, 7253, 7773, 8311, 8867, 9441, 10033, 10643, 11271, 11917, 12581, 13263, 13963, 14681, 15417, 16171, 16943
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Haskell
a214660 n = (9 * n - 11) * n + 3
-
Magma
[9*n^2-11*n+3: n in [1..60]]; // G. C. Greubel, Mar 09 2024
-
Mathematica
Table[9n^2-11n+3,{n,60}] (* or *) LinearRecurrence[{3,-3,1},{1,17,51},60] (* Harvey P. Dale, Aug 29 2021 *)
-
PARI
a(n)=9*n^2-11*n+3 \\ Charles R Greathouse IV, Jun 17 2017
-
SageMath
[9*n^2-11*n+3 for n in range(1,61)] # G. C. Greubel, Mar 09 2024
Formula
G.f.: (1+14*x+3*x^2)/(1-x)^3. - Harvey P. Dale, Aug 29 2021
E.g.f.: -3 + (3 - 2*x + 9*x^2)*exp(x). - G. C. Greubel, Mar 09 2024
Comments