cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214661 Odd numbers obtained by transposing the left half of A176271 into rows of a triangle: T(n,k) = A176271(n - 1 + k, k), 1 <= k <= n.

Original entry on oeis.org

1, 3, 9, 7, 15, 25, 13, 23, 35, 49, 21, 33, 47, 63, 81, 31, 45, 61, 79, 99, 121, 43, 59, 77, 97, 119, 143, 169, 57, 75, 95, 117, 141, 167, 195, 225, 73, 93, 115, 139, 165, 193, 223, 255, 289, 91, 113, 137, 163, 191, 221, 253, 287, 323, 361, 111, 135, 161, 189, 219, 251, 285, 321, 359, 399, 441
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 25 2012

Keywords

Examples

			.     Take the first n elements of the n-th diagonal (northwest to
.     southeast) of the triangle on the left side
.     and write this as n-th row on the triangle of the right side.
. 1:                1                    1
. 2:              3   _                  3  9
. 3:            7   9  __                7 15 25
. 4:         13  15  __  __             13 23 35 49
. 5:       21  23  25  __  __           21 33 47 63 ..
. 6:     31  33  35  __  __  __         31 45 61 .. .. ..
. 7:   43  45  47  49  __  __  __       43 59 .. .. .. .. ..
. 8: 57  59  61  63  __  __  __  __     57 .. .. .. .. .. .. .. .
		

Crossrefs

Cf. A051673 (row sums), A214675 (main diagonal).

Programs

  • Haskell
    import Data.List (transpose)
    a214661 n k = a214661_tabl !! (n-1) !! (k-1)
    a214661_row n = a214661_tabl !! (n-1)
    a214661_tabl = zipWith take [1..] $ transpose $ map reverse a176271_tabl
    
  • Magma
    [(n+k)^2-3*n-k+1: k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 10 2024
    
  • Mathematica
    Table[(n+k)^2-3*n-k+1, {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 10 2024 *)
  • SageMath
    flatten([[(n+k)^2-3*n-k+1 for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 10 2024

Formula

T(n, k) = (n+k)^2 - 3*n - k + 1.
T(n,k) = A176271(n+k-1, k).
T(n, k) = A214604(n,k) - 2*A025581(n,k).
T(n, k) = 2*A000290(A094727(n,k)) - A214604(n,k).
T(2*n-1, n) = A214675() (main diagonal).
T(n,1) = A002061(n).
T(n,n) = A016754(n-1).
Sum_{k=1..n} T(n, k) = A051673(n) (row sums).