A214661 Odd numbers obtained by transposing the left half of A176271 into rows of a triangle: T(n,k) = A176271(n - 1 + k, k), 1 <= k <= n.
1, 3, 9, 7, 15, 25, 13, 23, 35, 49, 21, 33, 47, 63, 81, 31, 45, 61, 79, 99, 121, 43, 59, 77, 97, 119, 143, 169, 57, 75, 95, 117, 141, 167, 195, 225, 73, 93, 115, 139, 165, 193, 223, 255, 289, 91, 113, 137, 163, 191, 221, 253, 287, 323, 361, 111, 135, 161, 189, 219, 251, 285, 321, 359, 399, 441
Offset: 1
Examples
. Take the first n elements of the n-th diagonal (northwest to . southeast) of the triangle on the left side . and write this as n-th row on the triangle of the right side. . 1: 1 1 . 2: 3 _ 3 9 . 3: 7 9 __ 7 15 25 . 4: 13 15 __ __ 13 23 35 49 . 5: 21 23 25 __ __ 21 33 47 63 .. . 6: 31 33 35 __ __ __ 31 45 61 .. .. .. . 7: 43 45 47 49 __ __ __ 43 59 .. .. .. .. .. . 8: 57 59 61 63 __ __ __ __ 57 .. .. .. .. .. .. .. .
Links
- Reinhard Zumkeller, Rows n = 1..150 of triangle, flattened
Crossrefs
Programs
-
Haskell
import Data.List (transpose) a214661 n k = a214661_tabl !! (n-1) !! (k-1) a214661_row n = a214661_tabl !! (n-1) a214661_tabl = zipWith take [1..] $ transpose $ map reverse a176271_tabl
-
Magma
[(n+k)^2-3*n-k+1: k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 10 2024
-
Mathematica
Table[(n+k)^2-3*n-k+1, {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 10 2024 *)
-
SageMath
flatten([[(n+k)^2-3*n-k+1 for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 10 2024