A161629
E.g.f. satisfies: A(x) = exp( x*Catalan(x*A(x)) ), where Catalan(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. of A000108.
Original entry on oeis.org
1, 1, 3, 25, 349, 6821, 171421, 5265625, 191160201, 8007548617, 380157603481, 20171371753061, 1182973489103869, 75984447924612397, 5305029326492409333, 400014338565211619761, 32396515980658185762961
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 25*x^3/3! + 349*x^4/4! + 6821*x^5/5! +...
log(A(x))/x = 1 + x*A(x) + 2*x^2*A(x)^2 + 5*x^3*A(x)^3 + 14*x^4*A(x)^4 +...+ A000108(n)*x^n*A(x)^n +...
log(A(x))/x = 1 + x + 6*x^2/2! + 63*x^3/3! + 988*x^4/4! + 20725*x^5/5! +...+ A213644(n)*x^n/n! +...
log(A(x)) = x + 2*x^2/2! + 18*x^3/3! + 252*x^4/4! + 4940*x^5/5! +...+ A213643(n)*x^n/n! +...
Ordinary Generating Function:
O.g.f.: 1 + x + 3*x^2 + 25*x^3 + 349*x^4 + 6821*x^5 + 171421*x^6 +...
O.g.f.: 1 + x/(1-x) + 2*x^2/(1-2*x)^3 + 6*2!*x^3/(1-3*x)^5 + 20*3!*x^4/(1-4*x)^7 + 70*4!*x^5/(1-5*x)^9 + 252*5!*x^6/(1-6*x)^11 +...+ (2*n-2)!/(n-1)!*x^n/(1-n*x)^(2*n-1) +...
-
Flatten[{1,Table[Sum[n!/k!*(n-k+1)^(k-1)*Binomial[2*n-k, n-k]*k/(2*n-k),{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Feb 26 2014 *)
-
{a(n,m=1)=if(n==0,1,sum(k=0,n,n!/k!*m*(m+n-k)^(k-1)*binomial(2*n-k,n-k)*k/(2*n-k)))}
-
{a(n,m=1)=local(A=1+x+x*O(x^n));for(i=1,n,A=exp((1-sqrt(1-4*x*A))/(2*A)));n!*polcoeff(A^m,n)}
-
/* O.g.f.: */
{a(n)=polcoeff(1+sum(m=1, n, (2*m-2)!/(m-1)!*x^m/(1-m*x+x*O(x^n))^(2*m-1)), n)}
A214688
E.g.f. equals the series reversion of x - x^2*exp(2*x).
Original entry on oeis.org
1, 2, 24, 408, 9760, 299520, 11223744, 496802432, 25365482496, 1467480983040, 94873742909440, 6778628603670528, 530412734126346240, 45110083291805622272, 4143219058165730672640, 408715543077297795072000, 43097868598208296895512576, 4837629293480336802779234304
Offset: 1
E.g.f.: A(x) = x + 2*x^2/2! + 24*x^3/3! + 408*x^4/4! + 9760*x^5/5! + ...
where A(x - x^2*exp(2*x)) = x and A(x) = x + A(x)^2*exp(2*A(x)).
The e.g.f. satisfies:
(3) A(x) = x + x^2*exp(2*A(x)) + 2*x^3*exp(4*A(x)) + 5*x^4*exp(6*A(x)) + 14*x^5*exp(8*A(x)) + 42*x^6*exp(10*A(x)) + ...
(4) log(A(x)/x) = x*exp(2*A(x)) + 3*x^2*exp(4*A(x))/2 + 10*x^3*exp(6*A(x))/3 + 35*x^4*exp(8*A(x))/4 + 126*x^5*exp(10*A(x))/5 + ...
(5) A(x) = x + x^2*exp(2*x) + d/dx x^4*exp(4*x)/2! + d^2/dx^2 x^6*exp(6*x)/3! + d^3/dx^3 x^8*exp(8*x)/4! + ...
(6) log(A(x)/x) = x*exp(2*x) + d/dx x^3*exp(4*x)/2! + d^2/dx^2 x^5*exp(6*x)/3! + d^3/dx^3 x^7*exp(8*x)/4! + ...
Related expansions:
A(x) = x*Catalan(x*G(x)) where G(x) = exp(2*A(x)):
exp(A(x)) = 1 + x + 3*x^2/2! + 31*x^3/3! + 529*x^4/4! + 12601*x^5/5! + 385891*x^6/6! + ...
exp(2*A(x)) = 1 + 2*x + 8*x^2/2! + 80*x^3/3! + 1360*x^4/4! + 32352*x^5/5! + 989824*x^6/6! + ..., which is the e.g.f. of A214689.
A(x)^2 = 2*x^2/2! + 12*x^3/3! + 216*x^4/4! + 5040*x^5/5! + 153120*x^6/6! + ...
Ordinary Generating Function:
O.g.f.: x + 2*x^2 + 24*x^3 + 408*x^4 + 9760*x^5 + 299520*x^6 + ...
O.g.f.: x + 2*x^2/(1-2*x)^3 + 6*2!*x^3/(1-4*x)^5 + 20*3!*x^4/(1-6*x)^7 + 70*4!*x^5/(1-8*x)^9 + 252*5!*x^6/(1-10*x)^11 + ... + (2*n)!/n!*x^(n+1)/(1-2*n*x)^(2*n+1) + ...
-
A214688:= func< n | n eq 1 select 1 else (&+[Binomial(n-1,k)*Binomial(n+k-1,k)*Factorial(k)*(2*k)^(n-k-1): k in [1..n-1]]) >;
[A214688(n): n in [1..30]]; // G. C. Greubel, Mar 07 2024
-
Flatten[{1,Table[Sum[(2*k)^(n-k-1)/(n-k-1)!*(n+k-1)!/k!,{k,1,n-1}],{n,2,20}]}] (* Vaclav Kotesovec, Jul 13 2013 *)
-
{a(n)=sum(k=0, n-1, (2*k)^(n-k-1)/(n-k-1)! * (n+k-1)!/k! )}
-
{a(n)=n!*polcoeff(serreverse(x-x^2*exp(2*x+x*O(x^n))), n)}
for(n=1, 25, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, exp(2*m*x+x*O(x^n))*x^(2*m)/m!)); n!*polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, exp(2*m*x+x*O(x^n))*x^(2*m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
-
/* From o.g.f.: */
{a(n)=polcoeff(sum(m=0, n, (2*m)!/m!*x^(m+1)/(1-2*m*x+x*O(x^n))^(2*m+1)), n)}
-
def A214688(n): return int(n==1)+sum(binomial(n-1,k)*binomial(n+k-1,k)*factorial(k)*(2*k)^(n-k-1) for k in range(1,n))
[A214688(n) for n in range(1,30)] # G. C. Greubel, Mar 07 2024
A382029
E.g.f. A(x) satisfies A(x) = exp(x*C(x*A(x)^2)), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
Original entry on oeis.org
1, 1, 3, 31, 529, 12601, 385891, 14440567, 638576065, 32580927505, 1883889232291, 121742057314351, 8695278706372369, 680187946863332233, 57833833258995140803, 5310742450917819399751, 523793286672328763358721, 55223769332070053104438945, 6197871354601209094032190147
Offset: 0
-
a(n) = if(n==0, 1, n!*sum(k=0, n-1, (2*k+1)^(n-k-1)*binomial(n+k, k)/((n+k)*(n-k-1)!)));
Showing 1-3 of 3 results.