cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214727 a(n) = a(n-1) + a(n-2) + a(n-3) with a(0) = 1, a(1) = a(2) = 2.

Original entry on oeis.org

1, 2, 2, 5, 9, 16, 30, 55, 101, 186, 342, 629, 1157, 2128, 3914, 7199, 13241, 24354, 44794, 82389, 151537, 278720, 512646, 942903, 1734269, 3189818, 5866990, 10791077, 19847885, 36505952, 67144914, 123498751, 227149617, 417793282
Offset: 0

Views

Author

Abel Amene, Jul 27 2012

Keywords

Comments

Part of a group of sequences defined by a(0), a(1)=a(2), a(n) = a(n-1) + a(n-2) + a(n-3) which is a subgroup of sequences with linear recurrences and constant coefficients listed in the index.
Note: A000073 (with offset=1), 1 followed by A000073, A000213, A141523, A214727, A214825 to A214831 completely define possible sequences with a(0)=0,1,2...9 and a(1)=a(2)=0,1,2...9 excluding any multiples of these sequences and the trivial case of a(0)=a(1)=a(2)=0.
Note: allowing a(0)=0 and a(1)=a(2)=1,2,3....9 leads to A000073 (with offset=1) and its multiples.
Note: allowing a(0)=1,2,3....9 a(1)=a(2)=0 leads to 1 followed by A000073 and its multiples.
With offset of 6 this sequence is the 8th row of tribonacci array A136175.

Examples

			G.f. = 1 + 2*x + 2*x^2 + 5 x^3 + 9*x^4 + 16*x^5 + 30*x^6 + 55*x^7 + ...
		

Crossrefs

Programs

  • GAP
    a:=[1,2,2];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 23 2019
  • Haskell
    a214727 n = a214727_list !! n
    a214727_list = 1 : 2 : 2 : zipWith3 (\x y z -> x + y + z)
       a214727_list (tail a214727_list) (drop 2 a214727_list)
    -- Reinhard Zumkeller, Jul 31 2012
    
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 23 2019
    
  • Mathematica
    LinearRecurrence[{1,1,1},{1,2,2},40] (* Ray Chandler, Dec 08 2013 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,1,1]^n*[1;2;2])[1,1] \\ Charles R Greathouse IV, Mar 22 2016
    
  • PARI
    my(x='x+O('x^40)); Vec((1+x-x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 23 2019
    
  • SageMath
    ((1+x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
    

Formula

G.f.: (1+x-x^2)/(1-x-x^2-x^3).
a(n) = K(n) -2*T(n+1) + 3*T(n), where K(n) = A001644(n), T(n) = A000073(n+1). - G. C. Greubel, Apr 23 2019
a(n) = Sum_{r root of x^3-x^2-x-1} r^n/(-r^2+2*r+1). - Fabian Pereyra, Nov 20 2024