cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214938 Number of Motzkin n-paths avoiding even-numbered steps that are flat steps.

Original entry on oeis.org

1, 1, 1, 2, 3, 7, 11, 28, 46, 122, 207, 562, 977, 2693, 4769, 13288, 23872, 67064, 121862, 344588, 631958, 1796518, 3319923, 9479780, 17630692, 50532640, 94493713, 271710662, 510468519, 1471935235, 2776629563, 8026070768, 15194389388, 44015873308, 83591476528
Offset: 0

Views

Author

David Scambler, Jul 30 2012

Keywords

Examples

			a(5) = 7: UuFdD, UuDdF, UdUdF UdFuD, FuUdD, FuFdF, FuDuD, showing even-numbered steps in lower case.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<7, [1, 1, 1, 2, 3, 7, 11][n+1],
          (4*(n+1)*(5066415*n^3-39734381*n^2+51596519*n-4935351)*a(n-1)
          +(83427510*n^4-315565444*n^3-532176102*n^2+1458851596*n
           +157931232)*a(n-2) -(157058865*n^4-1556016371*n^3
           +3706209891*n^2+220948511*n-3544991136)*a(n-3) -(107648400*n^4
           -766240720*n^3+696027720*n^2+4498794592*n -8240373864)*a(n-4)
          +8*(n-4)*(25332075*n^3-234136810*n^2+385914455*n+722870772)*a(n-5)
          -24*(n-5)*(1345605*n^3-3657347*n^2-11033479*n+18898695)*a(n-6)
          +12*(n-5)*(n-6)*(5066415*n^2-14402306*n-21087469)*a(n-7)) /
          (8*(n+2)*(n+1)*(1345605*n^2-5002952*n-4935351)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Nov 02 2013
  • Mathematica
    Table[Sum[Binomial[Floor[(n+1)/2],Mod[n,2]+2*(Floor[n/4]-k)] * CatalanNumber[k+Floor[(n+2)/4]],{k,0,Floor[n/4]}],{n,0,34}]
  • PARI
    /* G.f. A(x) = B(x^2) + x*C(x^2): */ {a(n)=local(A,B,C);
    B=(1/x)*serreverse(x*(1-x)*(1-2*x)^2/(1-4*x+5*x^2-2*x^3+x^4+x*O(x^n)));
    C=(1/x)*serreverse(x/(1+2*x+3*x^2+2*x^3+(1-sqrt(1+4*x^2+x*O(x^n)))^3/4));
    A=subst(B,x,x^2)+x*subst(C,x,x^2); polcoeff(A,n)} \\ Paul D. Hanna, Aug 03 2012

Formula

a(n) = Sum_{k=0..floor(n/4)} C(floor((n+1)/2), (n mod 2) + 2*(floor(n/4) - k)) * A000108(k + floor((n+2)/4)).
Let g.f. A(x) = B(x^2) + x*C(x^2), then
B(x) = (1/x)*Series_Reversion( x*(1-x)*(1-2*x)^2 / (1-4*x+5*x^2-2*x^3+x^4) ),
C(x) = (1/x)*Series_Reversion( x / (1+2*x+3*x^2+2*x^3 + 2*x^6*Catalan(-x^2)^3) )
where Catalan(x) = (1-sqrt(1-4*x))/(2*x). - Paul D. Hanna, Aug 03 2012
a(n) ~ c * 6^(n/2+1)/(5*sqrt(5*Pi)*n^(3/2)), where c = 2 * sqrt(3) if n is even and c = 3 * sqrt(2) if n is odd. - Vaclav Kotesovec, Nov 07 2013