A214954 a(n) = 3*a(n-1) + 6*a(n-2) + a(n-3), with a(0) = 0, a(1) = 2, and a(2) = 7.
0, 2, 7, 33, 143, 634, 2793, 12326, 54370, 239859, 1058123, 4667893, 20592276, 90842309, 400748476, 1767891558, 7799007839, 34405121341, 151777302615, 669561643730, 2953753868221, 13030408769658, 57483311162030, 253586139972259, 1118688695658615
Offset: 0
References
- R. Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012. (in review)
Links
- Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.
- Index entries for linear recurrences with constant coefficients, signature (3,6,1).
Programs
-
Mathematica
LinearRecurrence[{3, 6, 1}, {0, 2, 7}, 40] (* T. D. Noe, Jul 30 2012 *) CoefficientList[Series[(2x+x^2)/(1-3x-6x^2-x^3),{x,0,30}],x] (* Harvey P. Dale, Sep 13 2021 *)
-
PARI
Vec((2*x+x^2)/(1-3*x-6*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012
Formula
G.f.: (2*x+x^2)/(1-3*x-6*x^2-x^3).
Comments