cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A214775 Number T(n,k) of solid standard Young tableaux of shape [[n,k],[n-k]]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 2, 6, 2, 5, 25, 25, 5, 14, 98, 174, 98, 14, 42, 378, 962, 962, 378, 42, 132, 1452, 4804, 7020, 4804, 1452, 132, 429, 5577, 22689, 43573, 43573, 22689, 5577, 429, 1430, 21450, 103510, 245962, 325590, 245962, 103510, 21450, 1430
Offset: 0

Views

Author

Alois P. Heinz, Jul 28 2012

Keywords

Comments

T(n,k) is odd if and only if n = 2^i-1 for i in {0, 1, 2, ... } = A001477.

Examples

			Triangle T(n,k) begins:
    1;
    1,    1;
    2,    6,    2;
    5,   25,   25,    5;
   14,   98,  174,   98,   14;
   42,  378,  962,  962,  378,   42;
  132, 1452, 4804, 7020, 4804, 1452, 132;
  ...
		

Crossrefs

Columns 0-5 give: A000108, A214955, A215298, A215299, A215300, A215301.
Row sums give: A215002.
Central row elements give: A214801.

Programs

  • Maple
    b:= proc(x, y, z) option remember; `if`(z>y, b(x, z, y),
          `if`({x, y, z}={0}, 1, `if`(x>y and x>z, b(x-1, y, z), 0)+
          `if`(y>0, b(x, y-1, z), 0)+ `if`(z>0, b(x, y, z-1), 0)))
        end:
    T:= (n, k)-> b(n, k, n-k):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    b[x_, y_, z_] := b[x, y, z] = If[z>y, b[x, z, y], If[Union[{x, y, z}] == {0}, 1, If[x>y && x>z, b[x-1, y, z], 0] + If[y>0, b[x, y-1, z], 0] + If[z>0, b[x, y, z-1], 0]]]; T[n_, k_] := b[n, k, n-k]; Table[T[n, k] , {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from Maple *)
  • Sage
    @CachedFunction
    def B(x, y, z) :
        if z > y : return B(x, z, y)
        if x==y and y==z and z==0 : return 1
        a = B(x-1, y, z) if x>y and x>z else 0
        b = B(x, y-1, z) if y>0 else 0
        c = B(x, y, z-1) if z>0 else 0
        return a + b + c
    T = lambda n, k: B(n, k, n-k)
    [[T(n, k) for k in (0..n)] for n in (0..10)]
    # After Maple code of Alois P. Heinz. Peter Luschny, Jul 30 2012
Showing 1-1 of 1 results.