A215002
Number of all solid standard Young tableaux of shape [[n,k],[n-k]] for 0<=k<=n.
Original entry on oeis.org
1, 2, 10, 60, 398, 2764, 19796, 144536, 1070294, 8007052, 60380940, 458185992, 3494554380, 26764583096, 205711091880, 1585822364592, 12256625999718, 94942581080204, 736895626109148, 5729374337686696, 44615143884080996, 347905737091032552, 2716349710039969688
Offset: 0
-
b:= proc(x, y, z) option remember; `if`(z>y, b(x, z, y),
`if`({x, y, z}={0}, 1, `if`(x>y and x>z, b(x-1, y, z), 0)+
`if`(y>0, b(x, y-1, z), 0)+ `if`(z>0, b(x, y, z-1), 0)))
end:
a:= n-> add(b(n, k, n-k), k=0..n):
seq(a(n), n=0..25);
# second Maple program:
a:= proc(n) option remember; `if`(n<4, [1, 2, 10, 60][n+1],
((1640*n^8 -1180*n^7 -7114*n^6 +5615*n^5 +20240*n^4 -35170*n^3
+20379*n^2 -4050*n) *a(n-1) +(-7640*n^8 +14560*n^7 +47374*n^6
-140900*n^5 -37160*n^4 +601810*n^3 -944154*n^2 +580680*n -113400)
*a(n-2) +(-28800*n^8 +181440*n^7 -138240*n^6 -874800*n^5 +670680*n^4
+3165480*n^3 -3646440*n^2 -12960*n -453600) *a(n-3) +(207360*n^8
-1451520*n^7 +912384*n^6 +11767680*n^5 -15720480*n^4 -42042240*n^3
+92516256*n^2 -50388480*n +16329600) *a(n-4)) / (n* (n+1) *(2*n-1)
*(2*n+1) *(20*n^4-47*n^2-33*n+90)))
end:
seq(a(n), n=0..25);
-
b[x_, y_, z_] := b[x, y, z] = If[z>y, b[x, z, y], If[Union[{x, y, z}] == {0}, 1, If[x>y && x>z, b[x-1, y, z], 0] + If[y>0, b[x, y-1, z], 0] + If[z>0, b[x, y, z-1], 0]]]; T[n_, k_] := b[n, k, n-k]; a[n_] := Sum[T[n, k], {k, 0, n}]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 05 2015, after Alois P. Heinz *)
A214801
Number of solid standard Young tableaux of shape [[2*n,n],[n]].
Original entry on oeis.org
1, 6, 174, 7020, 325590, 16290708, 854630476, 46305862488, 2568272967270, 144984584562180, 8298621602461476, 480298712286979560, 28052543639835133692, 1650956086756046986440, 97790578929910135588440, 5824509559447044190027952, 348581174512709008160833158
Offset: 0
-
b:= proc(x, y, z) option remember; `if`(z>y, b(x, z, y),
`if`({x, y, z}={0}, 1, `if`(x>y and x>z, b(x-1, y, z), 0)+
`if`(y>0, b(x, y-1, z), 0)+ `if`(z>0, b(x, y, z-1), 0)))
end:
a:= n-> b(2*n, n, n):
seq(a(n), n=0..20);
-
b[x_, y_, z_] := b[x, y, z] = If[z>y, b[x, z, y], If[Union[{x, y, z}] == {0}, 1, If[x>y && x>z, b[x-1, y, z], 0] + If[y>0, b[x, y-1, z], 0] + If[z>0, b[x, y, z-1], 0]]]; a[n_] := b[2n, n, n]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Feb 05 2015, after Alois P. Heinz *)
A214955
Number of solid standard Young tableaux of shape [[n,n-1],[1]].
Original entry on oeis.org
1, 6, 25, 98, 378, 1452, 5577, 21450, 82654, 319124, 1234506, 4784276, 18572500, 72209880, 281150505, 1096087770, 4278278070, 16717354500, 65388738030, 256000696380, 1003116947820, 3933750236520, 15437682614250, 60625494924228, 238235373671148, 936735006679752
Offset: 1
-
a:= proc(n) option remember;
`if`(n<2, n, 2*(2*n-1)^2*a(n-1)/((n+1)*(2*n-3)))
end:
seq(a(n), n=1..30);
-
a[n_]:= a[n] = If[n<2, n, 2*(2*n-1)^2*a[n-1]/((n+1)*(2*n-3))]; Array[a, 30] (* Jean-François Alcover, Aug 14 2017, translated from Maple *)
-
a(n) = (2*n-1) * binomial(2*n,n)/(n+1); \\ Michel Marcus, Mar 06 2022
A215298
Number of solid standard Young tableaux of shape [[n,n-2],[2]].
Original entry on oeis.org
2, 25, 174, 962, 4804, 22689, 103510, 461318, 2021916, 8752042, 37520972, 159633060, 674969224, 2839400945, 11893509990, 49637986590, 206519808300, 856904298030, 3547095101220, 14652264350940, 60412895258040, 248675669866650, 1022088942267900, 4195255959533052
Offset: 2
-
a:= proc(n) option remember; `if`(n=2, 2,
2*(4*n^5 -26*n^4 +60*n^3 -58*n^2 +22*n -5)*a(n-1)/
(2*n^5 -14*n^4 +30*n^3 -10*n^2 -31*n +25))
end:
seq(a(n), n=2..30);
-
Table[12*(1 - 4*n + 10*n^2 - 8*n^3 + 2*n^4) * (2*n-4)! / ((n-2)! * (n+1)!), {n, 2, 20}] (* Vaclav Kotesovec, Sep 02 2014 *)
A215299
Number of solid standard Young tableaux of shape [[n,n-3],[3]].
Original entry on oeis.org
5, 98, 962, 7020, 43573, 245962, 1305238, 6633172, 32649890, 156817044, 738717796, 3425580376, 15679951989, 70992594650, 318450985230, 1417072222020, 6261985407990, 27502477286460, 120137081521500, 522256720264680, 2260525598620770, 9746264904755652
Offset: 3
-
a:= proc(n) option remember; `if`(n<5, [0$2, 5, 98][n],
2*(32*n^7 -400*n^6 +1976*n^5 -4900*n^4 +6452*n^3 -4420*n^2
+1350*n-315)*a(n-1) / (16*n^7 -224*n^6 +1204*n^5 -3008*n^4
+2980*n^3 +1072*n^2 -4155*n +2205))
end:
seq(a(n), n=3..30);
-
Flatten[{5, Table[(8*(45 - 180*n + 580*n^2 - 756*n^3 + 484*n^4 - 144*n^5 + 16*n^6) * (2*n-6)!) / (3*(n-3)!*(n+1)!), {n, 4, 20}]}] (* Vaclav Kotesovec, Sep 02 2014 *)
A215300
Number of solid standard Young tableaux of shape [[n,n-4],[4]].
Original entry on oeis.org
14, 378, 4804, 43573, 325590, 2149454, 13054108, 74688594, 408634828, 2159302420, 11097147528, 55747502501, 274790652518, 1332928973766, 6377276361900, 30149660760870, 141057202034340, 653892592144620, 3006490865152440, 13722387184879650, 62220533305358076
Offset: 4
-
a:= proc(n) option remember; `if`(n<6, [0$3, 14, 378, 4804][n],
((-460961029024*n^4 +54902186125572*n^3 -347074341314956*n^2
+421934757637074*n +6838164520124) *a(n-1) +(104238656896016*n^4
-2317913124589048*n^3 +16535317231755832*n^2 -44274446438628908*n
+29901662719961532)*a(n-2) +(-391233321452352*n^4
+7447800734464704*n^3 -48294258553516272*n^2 +122447135865649584*n
-105955729051546080)*a(n-3)) / (286655151052*n^4 -1210962058579*n^3
+4322649356693*n^2 -24951473774234*n -30771740340558))
end:
seq(a(n), n=4..30);
-
Flatten[{14,Table[(2*(n-5))!/(3*(n-5)!*(n+1)!)*(160*(-567+2394*n-8862*n^2+15592*n^3-15484*n^4+9152*n^5-3292*n^6+704*n^7-82*n^8+4*n^9)),{n,5,20}]}] (* Vaclav Kotesovec, Sep 02 2014 *)
A215301
Number of solid standard Young tableaux of shape [[n,n-5],[5]].
Original entry on oeis.org
42, 1452, 22689, 245962, 2149454, 16290708, 111709178, 711996820, 4292788212, 24777783256, 138077129921, 747501664986, 3949741123174, 20444004524804, 103955714523390, 520494659493180, 2570907398453580, 12546842041060200, 60579487688891610, 289692893191143876
Offset: 5
-
a:=proc(n) option remember; `if`(n<7, [0$4, 42, 1452, 22689][n],
((-940984202308081409937789248*n^7+36378423601372783158274124928*n^6
-540987251973268278464961515672*n^5+4140452478540141056223108638628*n^4
-17643038551017281385645661643624*n^3+40489345935054116443261823323140*n^2
-39934974057986427003556989745680*n-247683783218781902433156798480)*a(n-1)
+(5038765510419498883689330496*n^7-154613008671019208064714735488*n^6
+1939670093038831522623368803072*n^5-12888788321486668402366527701360*n^4
+48941495657518683977159471709724*n^3-105016281014420890409086708155812*n^2
+113403222542936117699329884355248*n-47046838608769352958257951122560)
*a(n-2))/(79676793824198327746135844*n^7-1949805875384464242394656236*n^6
+20900166698905174940775960603*n^5-125515785015357799830976856812*n^4
+431332553464051479008795376439*n^3-723271251684163430971195319466*n^2
+59211568171613916060478086240*n+1362260807703300463382362391640))
end:
seq(a(n), n=5..30);
-
Flatten[{42, 1452, Table[(2*(n-6))! / (5 * (n-6)! * (n+1)!) * 64 * (-51975 + 217350*n - 873908*n^2 + 1738396*n^3 - 2038350*n^4 + 1500940*n^5 - 724004*n^6 + 231788*n^7 - 48750*n^8 + 6460*n^9 - 488*n^10 + 16*n^11), {n, 7, 20}]}]
Showing 1-7 of 7 results.
Comments