A215067 Number of Motzkin n-paths avoiding odd-numbered steps that are up steps.
1, 1, 1, 2, 3, 6, 10, 21, 37, 80, 146, 322, 602, 1347, 2563, 5798, 11181, 25512, 49720, 114236, 224540, 518848, 1027038, 2384538, 4748042, 11068567, 22150519, 51817118, 104146733, 244370806, 493012682, 1159883685, 2347796965, 5536508864, 11239697816, 26560581688, 54061835288
Offset: 0
Keywords
Examples
a(5) = 6: fUfFd, fUfDf, fUdUd, fUdFf, fFfUd, fFfFf showing odd-numbered steps in lower case.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
Programs
-
Maple
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1, b(x-1, y) +b(x-1, y+1) + `if`(irem(x, 2)=1, 0, b(x-1, y-1)) )) end: a:= n-> b(n, 0): seq(a(n), n=0..40); # Alois P. Heinz, Apr 04 2013
-
Mathematica
f[n_,x_,y_]:=f[n,x,y] = If[x>n||y<0,0,If[x==n&&y==0,1, If[EvenQ[x],0,f[n,x+1,y+1]] +f[n,x+1,y-1] + f[n,x+1,y]]]; Table[f[n,0,0],{n,0,35}]
-
PARI
{a(n)=polcoeff((1/x)*serreverse(x*(3+2*x+x^2 - sqrt((1+x^2)*(1+4*x+x^2)+x^2*O(x^n)))/(2*(1+x+x^2+x^2*O(x^n)))),n)} \\ Paul D. Hanna, Aug 02 2012
-
Sage
from mpmath import mp mp.dps = 25; mp.pretty = True def A215067(n) : m = n%2; r = n//2 if n>0 else 1 return r^(1-m)*mp.hyper([-r,1-r-2*m,1+r+m],[(3-m)/2,(4-m)/2],1/4) [int(A215067(i)) for i in (0..32)] # Peter Luschny, Aug 03 2012
Formula
a(2*n) = Sum_{k=0..n} binomial(n+k-1,n-k) * binomial(n,k)/(n-k+1);
a(2*n+1) = Sum_{k=0..n} binomial(n+k+1,n-k) * binomial(n,k)/(n-k+1).
G.f.: (1/x)*Series_Reversion( x*(3+2*x+x^2 - sqrt((1+x^2)*(1+4*x+x^2)))/(2*(1+x+x^2)) ). - Paul D. Hanna, Aug 02 2012
G.f. satisfies: A(x) = G(x*A(x)) where G(x) = A(x/G(x)) = (3+2*x+x^2 + sqrt((1+x^2)*(1+4*x+x^2)))/4. - Paul D. Hanna, Aug 02 2012
G.f. satisfies: Series_Reversion(x*A(x)) = x - x^2*F(-x) where F(x) = g.f. of A114465. - Paul D. Hanna, Aug 02 2012
a(n) = 3_F_2([-r,1-r-2*m,1+r+m],[(3-m)/2,(4-m)/2],1/4)*r^(1-m) for n>0 where m = n mod 2 and r = floor(n/2). - Peter Luschny, Aug 03 2012
Comments