cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215098 a(0)=0, a(1)=1, a(n) = n*(n-1) - a(n-2).

Original entry on oeis.org

0, 1, 2, 5, 10, 15, 20, 27, 36, 45, 54, 65, 78, 91, 104, 119, 136, 153, 170, 189, 210, 231, 252, 275, 300, 325, 350, 377, 406, 435, 464, 495, 528, 561, 594, 629, 666, 703, 740, 779, 820, 861, 902, 945, 990, 1035, 1080, 1127, 1176, 1225, 1274, 1325, 1378, 1431
Offset: 0

Views

Author

Alex Ratushnyak, Aug 03 2012

Keywords

Comments

Same seed, b(n) = n*(n+1) - b(n-2) : 0, 1, 6, 11, 14, 19, 28, 37, 44, 53, 66, 79, 90, 103, 120, 137, 152, 169, 190, 211, 230, 251, 276, 301, 324, 349, 378, 407, 434, 463, 496, 529, 560, 593, ...
b(n) = a(n+1) - 1 if (n mod 4) < 2, otherwise b(n) = a(n+1) + 1.

Crossrefs

Cf. A007590 (a(0)=0, a(n) = n*(n-1) - a(n-1)).
Cf. A178218 (a(1)=1, a(n) = n*(n+1) - a(n-1)).

Programs

  • Magma
    [n le 2 select n-1 else  2*Binomial(n-1,2) -Self(n-2): n in [1..81]]; // G. C. Greubel, Nov 25 2022
    
  • Mathematica
    CoefficientList[Series[(x -x^2 +3x^3 -x^4)/(1 -3x +4x^2 -4x^3 +3x^4 -x^5), {x, 0, 70}], x] (* Vincenzo Librandi, Jul 18 2013 *)
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==n(n-1)-a[n-2]},a,{n,60}] (* or *) LinearRecurrence[{3,-4,4,-3,1},{0,1,2,5,10},60] (* Harvey P. Dale, May 15 2016 *)
  • Python
    prpr = 0
    prev = 1
    for n in range(2,77):
        print(prpr, end=', ')
        curr = n*(n-1) - prpr
        prpr = prev
        prev = curr
    
  • SageMath
    def A215098(n):
        if (n<2): return n
        else: return 2*binomial(n,2) - A215098(n-2)
    [A215098(n) for n in range(81)] # G. C. Greubel, Nov 25 2022

Formula

G.f.: x*(1-x+3*x^2-x^3)/(1-3*x+4*x^2-4*x^3+3*x^4-x^5). - David Scambler, Aug 06 2012
a(n) = (n^2 +n -1 +cos(pi*n/2) +sin(pi*n/2))/2. - Vaclav Kotesovec, Aug 11 2012