A215098 a(0)=0, a(1)=1, a(n) = n*(n-1) - a(n-2).
0, 1, 2, 5, 10, 15, 20, 27, 36, 45, 54, 65, 78, 91, 104, 119, 136, 153, 170, 189, 210, 231, 252, 275, 300, 325, 350, 377, 406, 435, 464, 495, 528, 561, 594, 629, 666, 703, 740, 779, 820, 861, 902, 945, 990, 1035, 1080, 1127, 1176, 1225, 1274, 1325, 1378, 1431
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-4,4,-3,1).
Crossrefs
Programs
-
Magma
[n le 2 select n-1 else 2*Binomial(n-1,2) -Self(n-2): n in [1..81]]; // G. C. Greubel, Nov 25 2022
-
Mathematica
CoefficientList[Series[(x -x^2 +3x^3 -x^4)/(1 -3x +4x^2 -4x^3 +3x^4 -x^5), {x, 0, 70}], x] (* Vincenzo Librandi, Jul 18 2013 *) RecurrenceTable[{a[0]==0,a[1]==1,a[n]==n(n-1)-a[n-2]},a,{n,60}] (* or *) LinearRecurrence[{3,-4,4,-3,1},{0,1,2,5,10},60] (* Harvey P. Dale, May 15 2016 *)
-
Python
prpr = 0 prev = 1 for n in range(2,77): print(prpr, end=', ') curr = n*(n-1) - prpr prpr = prev prev = curr
-
SageMath
def A215098(n): if (n<2): return n else: return 2*binomial(n,2) - A215098(n-2) [A215098(n) for n in range(81)] # G. C. Greubel, Nov 25 2022
Formula
G.f.: x*(1-x+3*x^2-x^3)/(1-3*x+4*x^2-4*x^3+3*x^4-x^5). - David Scambler, Aug 06 2012
a(n) = (n^2 +n -1 +cos(pi*n/2) +sin(pi*n/2))/2. - Vaclav Kotesovec, Aug 11 2012
Comments