A215100 a(n) = 3*a(n-1) + 4*a(n-2) + a(n-3) with a(0)=2, a(1)=5, a(2)=22.
2, 5, 22, 88, 357, 1445, 5851, 23690, 95919, 388368, 1572470, 6366801, 25778651, 104375627, 422608286, 1711106017, 6928126822, 28051412820, 113577851765, 459867333397, 1861964820071, 7538941645566, 30524551550379, 123591386053472, 500411306007498, 2026124013786761
Offset: 0
Examples
From 4*a(2) = a(3) = 88 we get 88*7^(1/3) = 4*((c(1)/c(4))^(8/3) + (c(4)/c(2))^(8/3) + (c(2)/c(1))^(8/3))=(c(1)/c(4))^(11/3) + (c(4)/c(2))^(11/3) + (c(2)/c(1))^(11/3).
References
- R. Witula, E. Hetmaniok and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5.
- Roman Witula, Full Description of Ramanujan Cubic Polynomials, Journal of Integer Sequences, Vol. 13 (2010), Article 10.5.7.
- Roman Witula, Ramanujan Cubic Polynomials of the Second Kind, Journal of Integer Sequences, Vol. 13 (2010), Article 10.7.5.
- Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.
- Index entries for linear recurrences with constant coefficients, signature (3,4,1).
Programs
-
Magma
I:=[2,5,22]; [n le 3 select I[n] else 3*Self(n-1) +4*Self(n-2) +Self(n-3): n in [1..41]]; // G. C. Greubel, Nov 25 2022
-
Mathematica
LinearRecurrence[{3, 4, 1}, {2, 5, 22}, 40]
-
PARI
Vec((2-x-x^2)/(1-3*x-4*x^2-x^3) + O(x^40)) \\ Michel Marcus, Apr 20 2016
-
SageMath
@CachedFunction def a(n): # a = A215100 if (n<3): return (2,5,22)[n] else: return 3*a(n-1) + 4*a(n-2) + a(n-3) [a(n) for n in range(41)] # G. C. Greubel, Nov 25 2022
Formula
G.f.: (2 - x - x^2)/(1 - 3*x - 4*x^2 - x^3).
Extensions
More terms from Michel Marcus, Apr 20 2016
Comments