cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215143 a(n) = 7*a(n-1) -14*a(n-2) +7*a(n-3), with a(0)=1, a(1)=2, a(2)=7.

Original entry on oeis.org

1, 2, 7, 28, 112, 441, 1715, 6615, 25382, 97069, 370440, 1411788, 5375839, 20458921, 77833217, 296038498, 1125816895, 4281011812, 16277915640, 61891962377, 235320000363, 894697938743, 3401649302758, 12933013979445, 49170893188704, 186945601728004, 710757805310287
Offset: 0

Views

Author

Roman Witula, Aug 04 2012

Keywords

Comments

The Berndt-type sequence number 3 for the argument 2Pi/7 (see A215007 and A215008 for the respective sequences numbers 1 and 2) is defined by the following relations: sqrt(7) *a(n) = s(1)*s(2)^(2n) + s(2)*s(4)^(2n) + s(4)*s(1)^(2n) = s(4)*s(1)^(2n) + s(1)*s(2)^(2n) + s(2)*s(4)^(2n), where s(j) := 2*sin(2*Pi*j/7).

References

  • R. Witula, Complex numbers, Polynomials and Fractial Partial Decompositions, T.3, Silesian Technical University Press, Gliwice 2010 (in Polish).

Crossrefs

Programs

  • Magma
    I:=[1,2,7]; [n le 3 select I[n] else 7*Self(n-1) - 14*Self(n-2) + 7*Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 19 2018
  • Mathematica
    LinearRecurrence[{7,-14,7},{1,2,7},40]
  • PARI
    Vec((1-5*x+7*x^2)/(1-7*x+14*x^2-7*x^3) + O(x^30)) \\ Michel Marcus, Apr 19 2016
    

Formula

G.f.: (1-5*x+7*x^2)/(1-7*x+14*x^2-7*x^3).