cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215199 Smallest number k such that k and k+1 are both of the form p*q^n where p and q are distinct primes.

Original entry on oeis.org

14, 44, 135, 2511, 8991, 29888, 916352, 12393728, 155161088, 2200933376, 6856828928, 689278976, 481758175232, 3684603215871, 35419114668032, 2035980763136, 174123685117952, 9399153082499072, 19047348965998592, 203368956137832447, 24217192574746623, 2503092614937444351
Offset: 1

Views

Author

Michel Lagneau, Aug 05 2012

Keywords

Comments

a(15) <= 35419114668032. - Donovan Johnson, Aug 22 2012
If k is a term such that k = p*q^n and k+1 = r*s^n, where p,q,r,s are primes, then clearly q != s. Conjecture: q and s are either 2 or 3 for all terms. - Chai Wah Wu, Mar 10 2019
Since q^n and s^n are coprime, the Chinese Remainder Theorem can be used to find candidate terms to test, i.e., numbers k such that k+1 == 0 (mod s^n) and k+1 == 1 (mod q^n) (see Python code). - Chai Wah Wu, Mar 12 2019
From David A. Corneth, Mar 13 2019: (Start)
Conjecture: Let 1 <= D < 2^n be the denominator of N/D of (3/2)^n. Without loss of generality, if the conjecture above holds that (q, s) = (2, 3) then r = D + k*2^n for some n.
Example: for n = 100, we have the continued fraction of (3/2)^100 to be 406561177535215237, 2, 1, 1, 14, 9, 1, 1, 2, 2, 1, 4, 1, 2, 6, 5, 1, 195, 3, 26, 39, 6, 1, 1, 1, 2, 7, 1, 4, 2, 1, 11, 1, 25, 6, 1, 4, 3, 2, 112, 1, 2, 1, 3, 1, 3, 4, 8, 1, 1, 12, 2, 1, 3, 2, 2 from which we compute D = 519502503658624787456021964081. We find r = 1100840223501761745286594404230449 = D + 868 * 2^100 giving a(100) + 1 = r*3^100. (End)

Examples

			a(3) = 135 because 135 = 5*3^3 and 136 = 17*2^3;
a(4) = 2511 because 2511 = 31*3^4 and 2512 = 157*2^4.
		

Crossrefs

Programs

  • Maple
    psig := proc(n)
        local s,p ;
        s := [] ;
        for p in ifactors(n)[2] do
            s := [op(s),op(2,p)] ;
        end do:
        sort(s) ;
    end proc:
    A215199 := proc(n)
        local slim,smi,sma,ca,qi,q,p,k ;
        for slim from 0 do
            smi := slim*1000 ;
            sma := (slim+1)*1000 ;
            ca := sma ;
            q := 2 ;
            for qi from 1 do
                p := nextprime(floor(smi/q^n)-1) ;
                while p*q^n < sma do
                    if p <> q then
                        k := p*q^n ;
                        if psig(k+1) = [1,n] then
                            ca := min(ca,k) ;
                        end if;
                    end if;
                    p := nextprime(p) ;
                end do:
                if q^n >= sma then
                    break;
                end if;
                q := nextprime(q) ;
            end do:
            if ca < sma then
                return ca ;
            end if;
        end do:
    end proc:
    for n from 1 do
        print(A215199(n)) ;
    end do; # R. J. Mathar, Aug 07 2012
  • Python
    from sympy import isprime, nextprime
    from sympy.ntheory.modular import crt
    def A215199(n):
        l = len(str(3**n))-1
        l10, result = 10**l, 2*10**l
        while result >= 2*l10:
            l += 1
            l102, result = l10, 20*l10
            l10 *= 10
            q, qn = 2, 2**n
            while qn <= l10:
                s, sn = 2, 2**n
                while sn <= l10:
                    if s != q:
                        a, b = crt([qn,sn],[0,1])
                        if a <= l102:
                            a = b*(l102//b) + a
                        while a < l10:
                            p, t = a//qn, (a-1)//sn
                            if p != q and t != s and isprime(p) and isprime(t):
                                result = min(result,a-1)
                            a += b
                    s = nextprime(s)
                    sn = s**n
                q = nextprime(q)
                qn = q**n
        return result # Chai Wah Wu, Mar 12 2019

Extensions

a(10)-a(14) from Donovan Johnson, Aug 22 2012
a(15)-a(17) from Chai Wah Wu, Mar 09 2019
a(18)-a(22) from Chai Wah Wu, Mar 10 2019