A215199 Smallest number k such that k and k+1 are both of the form p*q^n where p and q are distinct primes.
14, 44, 135, 2511, 8991, 29888, 916352, 12393728, 155161088, 2200933376, 6856828928, 689278976, 481758175232, 3684603215871, 35419114668032, 2035980763136, 174123685117952, 9399153082499072, 19047348965998592, 203368956137832447, 24217192574746623, 2503092614937444351
Offset: 1
Keywords
Examples
a(3) = 135 because 135 = 5*3^3 and 136 = 17*2^3; a(4) = 2511 because 2511 = 31*3^4 and 2512 = 157*2^4.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..1279 (terms 25..32 from David A. Corneth)
Programs
-
Maple
psig := proc(n) local s,p ; s := [] ; for p in ifactors(n)[2] do s := [op(s),op(2,p)] ; end do: sort(s) ; end proc: A215199 := proc(n) local slim,smi,sma,ca,qi,q,p,k ; for slim from 0 do smi := slim*1000 ; sma := (slim+1)*1000 ; ca := sma ; q := 2 ; for qi from 1 do p := nextprime(floor(smi/q^n)-1) ; while p*q^n < sma do if p <> q then k := p*q^n ; if psig(k+1) = [1,n] then ca := min(ca,k) ; end if; end if; p := nextprime(p) ; end do: if q^n >= sma then break; end if; q := nextprime(q) ; end do: if ca < sma then return ca ; end if; end do: end proc: for n from 1 do print(A215199(n)) ; end do; # R. J. Mathar, Aug 07 2012
-
Python
from sympy import isprime, nextprime from sympy.ntheory.modular import crt def A215199(n): l = len(str(3**n))-1 l10, result = 10**l, 2*10**l while result >= 2*l10: l += 1 l102, result = l10, 20*l10 l10 *= 10 q, qn = 2, 2**n while qn <= l10: s, sn = 2, 2**n while sn <= l10: if s != q: a, b = crt([qn,sn],[0,1]) if a <= l102: a = b*(l102//b) + a while a < l10: p, t = a//qn, (a-1)//sn if p != q and t != s and isprime(p) and isprime(t): result = min(result,a-1) a += b s = nextprime(s) sn = s**n q = nextprime(q) qn = q**n return result # Chai Wah Wu, Mar 12 2019
Extensions
a(10)-a(14) from Donovan Johnson, Aug 22 2012
a(15)-a(17) from Chai Wah Wu, Mar 09 2019
a(18)-a(22) from Chai Wah Wu, Mar 10 2019
Comments