cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A320041 Primes that are values of A215240.

Original entry on oeis.org

3, 13, 6163, 8311, 12097, 13159, 14957, 18433, 21061, 23627, 24571, 27061, 29863, 35617, 40897, 44221, 45307, 45737, 45821, 67421, 68113, 69313, 71237, 75377, 82903, 89227, 89269, 89671, 94543, 100483, 101533, 101833, 113683, 114827, 118903, 121763, 122167, 125933, 131581, 131617, 143461, 144061
Offset: 1

Views

Author

Robert Israel and J. M. Bergot, Oct 03 2018

Keywords

Comments

Values of A215240(A320061), sorted.

Examples

			a(3) = 6163 is in the sequence because it is prime and A215240(264) = 6163.
		

Crossrefs

Programs

  • Maple
    N:= 10^5: # to get all terms <= N
    f:= n -> convert(numtheory:-invphi(n),`+`):
    Res:= {}:
    for n from 1 to N do
      v:= f(n);
      if isprime(v) and v <= N then
         Res:= Res union {v}
      fi
    od:
    Res;

A320061 Numbers k such that A215240(k) is prime.

Original entry on oeis.org

1, 2, 144, 264, 540, 720, 888, 928, 1012, 1368, 1452, 1476, 1656, 1764, 1800, 1836, 1960, 2024, 2392, 2664, 2712, 2968, 3444, 3680, 3720, 3808, 4248, 4284, 4352, 4368, 4776, 5060, 5412, 5600, 6516, 6624, 6840, 6984, 7040, 7168, 7176, 7600, 7836, 7860, 8052, 8160, 8196, 8304, 8496, 8848, 9144
Offset: 1

Views

Author

Robert Israel, Oct 04 2018

Keywords

Examples

			a(3)=144 is in the sequence because phi(h)=144 for h = 185, 219, 273, 285, 292, 296, 304, 315, 364, 370, 380, 432, 438, 444, 456, 468, 504, 540, 546, 570, 630, and the sum of those is the prime 8311.
		

Crossrefs

Programs

  • Maple
    select(n -> isprime(convert(numtheory:-invphi(n),`+`)), [$1..10000]);
  • PARI
    isok(n) = isprime(vecsum(invphi(n))); \\ Michel Marcus, Oct 05 2018

A217842 Product of the numbers p such that phi(p) = n, where phi is Euler's totient function.

Original entry on oeis.org

2, 72, 1, 4800, 1, 15876, 1, 3456000, 1, 242, 1, 300500928, 1, 1, 1, 2130739200, 1, 1052676, 1, 119790000, 1, 1058, 1, 531598161669120000, 1, 1, 1, 1682, 1, 1922, 1, 20864198246400, 1, 1, 1, 1159208596538496, 1, 1, 1, 265804426800000000, 1, 17757796, 1
Offset: 1

Views

Author

T. D. Noe, Oct 12 2012

Keywords

Comments

It appears that all terms greater than 1 are distinct. This is true for all n <= 10^6.

Crossrefs

Cf. A002181 (smallest inverse), A006511 (largest inverse), A215240 (sum of inverses).
Cf. A032447 (inverse of phi).

Programs

  • Mathematica
    Needs["CNT`"]; Table[Times @@ PhiInverse[n], {n, 100}]
  • PARI
    a(n) = vecprod(invphi(n)); \\ Amiram Eldar, Nov 15 2024, using Max Alekseyev's invphi.gp
Showing 1-3 of 3 results.