A215267 Decimal expansion of 90/Pi^4.
9, 2, 3, 9, 3, 8, 4, 0, 2, 9, 2, 1, 5, 9, 0, 1, 6, 7, 0, 2, 3, 7, 5, 0, 4, 9, 4, 0, 4, 0, 6, 8, 2, 4, 7, 2, 7, 6, 4, 5, 0, 2, 1, 6, 6, 8, 2, 7, 4, 4, 3, 6, 4, 4, 6, 3, 5, 1, 2, 3, 1, 9, 2, 4, 7, 7, 6, 2, 9, 6, 4, 0, 7, 9, 9, 6, 7, 2, 8, 2, 2, 4, 1, 6, 5, 1, 4, 3, 7, 3, 6, 5, 7, 6, 1, 4, 4, 1, 5
Offset: 0
Examples
0.92393840292159016702375049404068247276450216682744364463512319...
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 231.
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 0..10000
- John Christopher, The Asymptotic Density of Some k-Dimensional Sets, The American Mathematical Monthly, Vol. 63, No. 6 (1956), pp. 399-401.
- Math Forums, Probability that a number is composite, Aug 2012.
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[90/Pi^4, 10, 100][[1]] (* Bruno Berselli, Aug 07 2012 *)
-
Maxima
90/%pi^4; /* Balarka Sen, Aug 08 2012 */
-
PARI
90/Pi^4 \\ Charles R Greathouse IV, Aug 07 2012
Formula
Reciprocal of A013662.
1/zeta(4) = 90/Pi^4 = Product_{k>=1} (1 - 1/prime(k)^4) = Sum_{n>=1} mu(n)/n^4, a Dirichlet series for the Möbius function mu. See the examples in Apostol, here for s = 4. - Wolfdieter Lang, Aug 07 2019
Comments