cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215267 Decimal expansion of 90/Pi^4.

Original entry on oeis.org

9, 2, 3, 9, 3, 8, 4, 0, 2, 9, 2, 1, 5, 9, 0, 1, 6, 7, 0, 2, 3, 7, 5, 0, 4, 9, 4, 0, 4, 0, 6, 8, 2, 4, 7, 2, 7, 6, 4, 5, 0, 2, 1, 6, 6, 8, 2, 7, 4, 4, 3, 6, 4, 4, 6, 3, 5, 1, 2, 3, 1, 9, 2, 4, 7, 7, 6, 2, 9, 6, 4, 0, 7, 9, 9, 6, 7, 2, 8, 2, 2, 4, 1, 6, 5, 1, 4, 3, 7, 3, 6, 5, 7, 6, 1, 4, 4, 1, 5
Offset: 0

Views

Author

Jimmy Zotos, Aug 07 2012

Keywords

Comments

Decimal expansion of 1/zeta(4), the inverse of A013662. This is the probability that 4 randomly chosen natural numbers are relatively prime.
Also the asymptotic probability that a random integer is 4-free. See equivalent comments in A088453, A059956. - Balarka Sen, Aug 08 2012
The probability that the greatest common divisor of two numbers selected at random is squarefree (Christopher, 1956). - Amiram Eldar, May 23 2020

Examples

			0.92393840292159016702375049404068247276450216682744364463512319...
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 231.

Crossrefs

Cf. A013662, A046100 (4-free numbers), A059956 (1/zeta(2)).

Programs

Formula

Reciprocal of A013662.
1/zeta(4) = 90/Pi^4 = Product_{k>=1} (1 - 1/prime(k)^4) = Sum_{n>=1} mu(n)/n^4, a Dirichlet series for the Möbius function mu. See the examples in Apostol, here for s = 4. - Wolfdieter Lang, Aug 07 2019