A215328
Smooth Lyndon words with 3 colors.
Original entry on oeis.org
1, 3, 2, 5, 10, 24, 49, 112, 240, 534, 1175, 2626, 5848, 13153, 29594, 66955, 151814, 345494, 788049, 1802675, 4132469, 9495242, 21859912, 50423465, 116511119, 269666586, 625101288, 1451128164, 3373250909, 7851415835
Offset: 0
Cf.
A027376 (Lyndon words, 3 colors),
A215327 (smooth necklaces, 3 colors).
A208772
Number of n-bead necklaces labeled with numbers 1..3 not allowing reversal, with no adjacent beads differing by more than 1.
Original entry on oeis.org
3, 5, 7, 12, 19, 39, 71, 152, 315, 685, 1479, 3294, 7283, 16359, 36791, 83312, 189123, 431393, 986247, 2262308, 5200851, 11985863, 27676615, 64034954, 148406243, 344507805, 800902879, 1864502926, 4346071603, 10142619039, 23696518919, 55420734752, 129742923475, 304014655205, 712985901943, 1673486556648
Offset: 1
All solutions for n=4:
..1....2....2....2....1....1....1....3....2....1....2....1
..2....2....3....2....1....2....1....3....3....2....2....1
..1....3....2....2....2....3....1....3....3....2....2....1
..2....3....3....3....2....2....1....3....3....2....2....2
Cf.
A215335 (cyclically smooth Lyndon words with 3 colors).
-
sn[n_, k_] := 1/n*Sum[ Sum[ EulerPhi[j]*(1 + 2*Cos[i*Pi/(k + 1)])^(n/j), {j, Divisors[n]}], {i, 1, k}]; Table[sn[n, 3], {n, 1, 36}] // FullSimplify (* Jean-François Alcover, Oct 31 2017, after Joerg Arndt *)
-
/* from the Knopfmacher et al. reference */
default(realprecision,99); /* using floats */
sn(n,k)=1/n*sum(i=1,k,sumdiv(n,j,eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j)));
vector(66,n, round(sn(n,3)) )
/* Joerg Arndt, Aug 09 2012 */
A215329
Smooth necklaces with 4 colors.
Original entry on oeis.org
1, 4, 7, 12, 25, 51, 121, 272, 656, 1563, 3794, 9193, 22529, 55189, 136025, 335942, 832605, 2068070, 5150558, 12852754, 32139908, 80509629, 202016993, 507669052, 1277595853, 3219366640, 8122296152
Offset: 0
The smooth pre-necklaces, necklaces (N), and Lyndon words (L) of length 4 with 4 colors (using symbols ".", "1", "2", and "3") are:
.... 1 . N
...1 4 ...1 N L
..1. 3 .1.
..11 4 ..11 N L
..12 4 ..12 N L
.1.1 2 .1 N
.11. 3 11.
.111 4 .111 N L
.112 4 .112 N L
.121 4 .121 N L
.122 4 .122 N L
.123 4 .123 N L
1111 1 1 N
1112 4 1112 N L
1121 3 121
1122 4 1122 N L
1123 4 1123 N L
1212 2 12 N
1221 3 221
1222 4 1222 N L
1223 4 1223 N L
1232 4 1232 N L
1233 4 1233 N L
2222 1 2 N
2223 4 2223 N L
2232 3 232
2233 4 2233 N L
2323 2 23 N
2332 3 332
2333 4 2333 N L
3333 1 3 N
There are 31 pre-necklaces, 25 necklaces, and 18 Lyndon words.
So a(4) = 25.
Cf.
A215327 (smooth necklaces, 3 colors)
A215333
Smooth necklaces with 7 colors.
Original entry on oeis.org
1, 7, 13, 24, 55, 126, 330, 836, 2232, 5926, 15932, 42849, 116011, 314375, 854952, 2329162, 6359574, 17393334, 47653952, 130752976, 359275056, 988458426, 2722803495
Offset: 0
The smooth pre-necklaces, necklaces (N), and Lyndon words (L) of length 3 with 4 colors (using symbols ".", "1", "2", "3", "4", "5", and "6") are:
... 1 . N
..1 3 ..1 N L
.1. 2 1.
.11 3 .11 N L
.12 3 .12 N L
111 1 1 N
112 3 112 N L
121 2 21
122 3 122 N L
123 3 123 N L
222 1 2 N
223 3 223 N L
232 2 32
233 3 233 N L
234 3 234 N L
333 1 3 N
334 3 334 N L
343 2 43
344 3 344 N L
345 3 345 N L
444 1 4 N
445 3 445 N L
454 2 54
455 3 455 N L
456 3 456 N L
555 1 5 N
556 3 556 N L
565 2 65
566 3 566 N L
666 1 6 N
There are 30 pre-necklaces, 24 necklaces, and 17 Lyndon words.
So a(3) = 24.
Cf.
A215327 (smooth necklaces with 3 colors).
A215335
Cyclically smooth Lyndon words with 3 colors.
Original entry on oeis.org
3, 2, 4, 7, 16, 30, 68, 140, 308, 664, 1476, 3248, 7280, 16286, 36768, 83160, 189120, 431046, 986244, 2261616, 5200776, 11984382, 27676612, 64031520, 148406224, 344500520, 800902564, 1864486560, 4346071600, 10142581552, 23696518916, 55420651440, 129742921992, 304014466080, 712985901856, 1673486122000
Offset: 1
The cyclically smooth necklaces (N) and Lyndon words (L) of length 4 with 3 colors (using symbols ".", "1", and "2") are:
.... 1 . N
...1 4 ...1 N L
..11 4 ..11 N L
.1.1 2 .1 N
.111 4 .111 N L
.121 4 .121 N L
1111 1 1 N
1112 4 1112 N L
1122 4 1122 N L
1212 2 12 N
1222 4 1222 N L
2222 1 2 N
There are 12 necklaces (so A208772(4)=12) and a(4)=7 Lyndon words.
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Latham Boyle, Paul J. Steinhardt, Self-Similar One-Dimensional Quasilattices, arXiv preprint arXiv:1608.08220 [math-ph], 2016.
- Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, Smooth words and Chebyshev polynomials, arXiv:0809.0551v1 [math.CO], 2008.
Cf.
A208772 (cyclically smooth necklaces, 3 colors).
Cf.
A215327 (smooth necklaces, 3 colors),
A215328 (smooth Lyndon words, 3 colors).
-
terms = 40;
sn[n_, k_] := 1/n Sum[EulerPhi[j] (1+2Cos[i Pi/(k+1)])^(n/j), {i, 1, k}, {j, Divisors[n]}];
vn = Table[Round[sn[n, 3]], {n, terms}];
vl = Table[Sum[MoebiusMu[n/d] vn[[d]], {d, Divisors[n]}], {n, terms}] (* Jean-François Alcover, Jul 22 2018, after Joerg Arndt *)
-
default(realprecision,99); /* using floats */
sn(n,k)=1/n*sum(i=1,k,sumdiv(n,j,eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j)));
vn=vector(66,n, round(sn(n,3)) ); /* necklaces */
/* Lyndon words, via Moebius inversion: */
vl=vector(#vn,n, sumdiv(n,d, moebius(n/d)*vn[d]))
A215331
Smooth necklaces with 5 colors.
Original entry on oeis.org
1, 5, 9, 16, 35, 76, 190, 455, 1156, 2911, 7438, 18992, 48902, 125968, 325975, 845202, 2197690, 5725854, 14951308, 39110371, 102490649, 269002564, 707096093, 1861183847, 4905172383, 12942843424
Offset: 0
The smooth pre-necklaces, necklaces (N), and Lyndon words (L) of length 4 with 4 colors (using symbols ".", "1", "2", "3", and "4") are:
.... 1 . N
...1 4 ...1 N L
..1. 3 .1.
..11 4 ..11 N L
..12 4 ..12 N L
.1.1 2 .1 N
.11. 3 11.
.111 4 .111 N L
.112 4 .112 N L
.121 4 .121 N L
.122 4 .122 N L
.123 4 .123 N L
1111 1 1 N
1112 4 1112 N L
1121 3 121
1122 4 1122 N L
1123 4 1123 N L
1212 2 12 N
1221 3 221
1222 4 1222 N L
1223 4 1223 N L
1232 4 1232 N L
1233 4 1233 N L
1234 4 1234 N L
2222 1 2 N
2223 4 2223 N L
2232 3 232
2233 4 2233 N L
2234 4 2234 N L
2323 2 23 N
2332 3 332
2333 4 2333 N L
2334 4 2334 N L
2343 4 2343 N L
2344 4 2344 N L
3333 1 3 N
3334 4 3334 N L
3343 3 343
3344 4 3344 N L
3434 2 34 N
3443 3 443
3444 4 3444 N L
4444 1 4 N
There are 43 pre-necklaces, 35 necklaces, and 26 Lyndon words.
So a(4) = 35.
Cf.
A215327 (smooth necklaces, 3 colors)
A215328 (smooth Lyndon words, 3 colors).
A215332
Smooth Lyndon words with 5 colors.
Original entry on oeis.org
1, 5, 4, 11, 26, 71, 173, 450, 1132, 2898, 7393, 18987, 48796, 125963, 325786, 845153, 2197255, 5725849, 14950221, 39110366, 102488189, 269002371, 707090144, 1861183842, 4905157159, 12942843383
Offset: 0
Cf.
A215332 (smooth necklaces, 5 colors),
A215327 (smooth necklaces, 3 colors).
A215334
Smooth Lyndon words with 7 colors.
Original entry on oeis.org
1, 7, 6, 17, 42, 119, 305, 829, 2196, 5907, 15863, 42842, 115845, 314368, 854647, 2329087, 6358855, 17393327, 47652117, 130752969, 359270784, 988458115, 2722792878
Offset: 0
Cf.
A215328 (smooth Lyndon words, 3 colors),
A215327 (smooth necklaces, 3 colors).
Showing 1-8 of 8 results.
Comments