cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215341 Expansion of series_reversion( x/(1+x^4*sum(k>=0, x^k)) ) / x.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 5, 10, 16, 23, 53, 118, 232, 411, 813, 1718, 3568, 7012, 13925, 28603, 59533, 121878, 247915, 509136, 1057278, 2194138, 4536943, 9394145, 19552639, 40803472, 85131237, 177640486, 371426592, 778275264, 1632420197, 3425607187, 7195476245, 15134138683, 31866093569
Offset: 0

Views

Author

Joerg Arndt, Aug 19 2012

Keywords

Comments

Number of Dyck words of semilength n with substrings UUU...UU (ascents) only of lengths >= 4. See A215340 for an explanation. [Joerg Arndt, Apr 16 2013]

Crossrefs

Cf. A000108 (rev. of x/(1+1*sum(k>=1,x^k)) ), A005043 (rev. of x/(1+x*sum(k>=1,x^k)) ), A114997 (rev. of x/(1+x^2*sum(k>=1,x^k)) ).
Cf. A001003 (rev. of x*(1-1*sum(k=1,N,x^k)) ), A046736 (rev. of x*(1-x*sum(k=1,N,x^k)) ), A054514 (rev. of x*(1-x^2*sum(k=1,N,x^k)) ), A215342 (rev. of x*(1-x^3*sum(k=1,N,x^k)) ).

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y0 and t in [0, 4],
           b(x-1, y, 0), 0) +b(x, y-1, min(t+1, 4))))
        end:
    a:= n-> b(n, n, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 16 2013
  • Mathematica
    InverseSeries[x/(1+x^4/(1-x)) + O[x]^50] // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Mar 29 2017 *)
  • Maxima
    a(n):=sum(binomial(n+1,i)*binomial(n-3*i-1,n-4*i),i,0,floor(n/4))/(n+1); /* Vladimir Kruchinin, Apr 01 2019 */
  • PARI
    N=66; Vec( serreverse(x/(1+x^4*sum(k=0,N,x^k))+O(x^N)) / x )
    

Formula

G.f. A(x) satisfies 0 = -x^4*A(x)^4 - x*A(x)^2 + (x + 1)*A(x) - 1. [Joerg Arndt, Mar 01 2014]
Recurrence: 2*n*(n+1)*(2*n+3)*(16204*n^4 - 82948*n^3 + 139973*n^2 - 85643*n + 10674)*a(n) = - (n-1)*n*(307876*n^5 - 960260*n^4 + 288863*n^3 + 582749*n^2 + 5406*n + 12696)*a(n-1) + 4*(n-2)*(129632*n^6 - 469136*n^5 + 354226*n^4 + 317255*n^3 - 469674*n^2 + 176517*n - 21420)*a(n-2) - 2*(n-3)*(n-2)*(16204*n^5 - 34336*n^4 + 82943*n^3 - 208775*n^2 + 192120*n - 40656)*a(n-3) + 6*(n-3)*(n-2)*(97224*n^5 - 351852*n^4 + 179198*n^3 + 540009*n^2 - 571727*n + 92968)*a(n-4) + 229*(n-4)*(n-3)*(n-2)*(16204*n^4 - 18132*n^3 - 11647*n^2 + 10275*n - 1740)*a(n-5). - Vaclav Kotesovec, Mar 22 2014
a(n) ~ sqrt((s-1)*s^3/(6-8*s+3*s^2)) / (2*sqrt(Pi)*n^(3/2)*r^n), where r = 0.4577644245749322..., s = 1.232809919151165... are roots of the system of equations 1 + r*s^2 + r^4*s^4 = (1+r)*s, 1+r = 2*r*s + 4*r^4*s^3. - Vaclav Kotesovec, Mar 22 2014
a(n) = (1/(n+1)) * Sum_{i=0..floor(n/4)} C(n+1,i) * C(n-3*i-1,n-4*i). - Vladimir Kruchinin, Apr 01 2019

Extensions

Modified definition to obtain offset 0 for combinatorial interpretation, Joerg Arndt, Apr 16 2013