cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215367 Lengths of binary representations of prime Fibonacci numbers.

Original entry on oeis.org

2, 2, 3, 4, 7, 8, 11, 15, 19, 29, 32, 57, 90, 94, 249, 299, 300, 311, 353, 394, 396, 2062, 3278, 3739, 6463, 6718, 10018, 17745, 21352, 24991, 26041, 35290, 56815, 72833, 90265, 102810, 139616, 275876, 301148, 409631, 412163, 419815, 646697, 728882, 892522, 1135784, 1251758, 1366768
Offset: 1

Views

Author

Alex Ratushnyak, Aug 08 2012

Keywords

Comments

Some of the larger entries may only correspond to probable primes.
As of August 2012, the index of last provable Fibonacci prime is A001605(33)=81839, that is, a(n) corresponds to a probable prime for n>33.

Examples

			Tenth prime Fibonacci number is A005478(10) = 433494437, 29 digits in the binary representation, so a(10)=29.
		

Crossrefs

Programs

  • Java
    import java.math.BigInteger;
    public class A215367 {
      public static void main (String[] args) {
        BigInteger prpr = BigInteger.valueOf(0);
        BigInteger prev = BigInteger.valueOf(1), curr;
        int indices[] = {
        // === insert terms of A001605 here, followed by a comma === //
        -1 };
        int ipos = 1, ind = indices[0];
        for (long k=1; ; ++k) {
          if (k==ind) {
            System.out.printf("%d, ",prev.bitLength());
            ind = indices[ipos++];
            if (ind<0) break;
          }
          curr = prpr.add(prev);
          prpr = prev;
          prev = curr;
        }
      }
    }
  • Mathematica
    Length /@ IntegerDigits[Select[Fibonacci[Range[1000]], PrimeQ[#] &], 2] (* T. D. Noe, Aug 08 2012 *)
    IntegerLength[#,2]&/@Select[Fibonacci[Range[1000]],PrimeQ] (* Harvey P. Dale, Nov 20 2021 *)

Formula