A215367 Lengths of binary representations of prime Fibonacci numbers.
2, 2, 3, 4, 7, 8, 11, 15, 19, 29, 32, 57, 90, 94, 249, 299, 300, 311, 353, 394, 396, 2062, 3278, 3739, 6463, 6718, 10018, 17745, 21352, 24991, 26041, 35290, 56815, 72833, 90265, 102810, 139616, 275876, 301148, 409631, 412163, 419815, 646697, 728882, 892522, 1135784, 1251758, 1366768
Offset: 1
Examples
Tenth prime Fibonacci number is A005478(10) = 433494437, 29 digits in the binary representation, so a(10)=29.
Links
- C. K. Caldwell, The Prime Glossary, Fibonacci prime
- Henri & Renaud Lifchitz, Probable primes
Programs
-
Java
import java.math.BigInteger; public class A215367 { public static void main (String[] args) { BigInteger prpr = BigInteger.valueOf(0); BigInteger prev = BigInteger.valueOf(1), curr; int indices[] = { // === insert terms of A001605 here, followed by a comma === // -1 }; int ipos = 1, ind = indices[0]; for (long k=1; ; ++k) { if (k==ind) { System.out.printf("%d, ",prev.bitLength()); ind = indices[ipos++]; if (ind<0) break; } curr = prpr.add(prev); prpr = prev; prev = curr; } } }
-
Mathematica
Length /@ IntegerDigits[Select[Fibonacci[Range[1000]], PrimeQ[#] &], 2] (* T. D. Noe, Aug 08 2012 *) IntegerLength[#,2]&/@Select[Fibonacci[Range[1000]],PrimeQ] (* Harvey P. Dale, Nov 20 2021 *)
Comments