A216375
Numbers k such that 11^k + k^11 + 1 is prime.
Original entry on oeis.org
0, 1, 5, 941, 23071
Offset: 1
-
Select[Range[0, 5000], PrimeQ[11^# + #^11 + 1] &]
-
is(n)=isprime(11^n+n^11+1) \\ Charles R Greathouse IV, Feb 17 2017
A216420
Numbers k such that 13^k + k^13 - 1 is prime.
Original entry on oeis.org
1, 5, 85, 155, 383, 6223
Offset: 1
-
[n: n in [0..1000] | IsPrime(13^n+n^13-1)];
-
Select[Range[0, 5000], PrimeQ[13^# + #^13 - 1] &]
-
is(n)=ispseudoprime(13^n+n^13-1) \\ Charles R Greathouse IV, Jun 13 2017
A216592
Numbers m such that 8^m + m^8 + 1 is prime.
Original entry on oeis.org
8^0 + 0^8 + 1 = 2, which is prime, so 0 is in the sequence.
Cf. Numbers m such that k^m + m^k - 1 is prime:
A215439 (k=2),
A215440 (k=3),
A216424 (k=4),
A215443 (k=5),
A216425 (k=6),
A215445 (k=7),
A216591 (k=8),
A216619 (k=10),
A215446 (k=11),
A216420 (k=13),
A216422 (k=19).
-
Select[Range[0, 10000], PrimeQ[8^# + #^8 + 1] &]
-
is(n)=ispseudoprime(8^n+n^8+1) \\ Charles R Greathouse IV, Jun 13 2017
Showing 1-3 of 3 results.
Comments