cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A216375 Numbers k such that 11^k + k^11 + 1 is prime.

Original entry on oeis.org

0, 1, 5, 941, 23071
Offset: 1

Views

Author

Vincenzo Librandi, Sep 06 2012

Keywords

Comments

a(6) > 10^5. - Robert Price, Jan 16 2013

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 5000], PrimeQ[11^# + #^11 + 1] &]
  • PARI
    is(n)=isprime(11^n+n^11+1) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(5) from Robert Price, Jan 16 2014

A216420 Numbers k such that 13^k + k^13 - 1 is prime.

Original entry on oeis.org

1, 5, 85, 155, 383, 6223
Offset: 1

Views

Author

Vincenzo Librandi, Sep 07 2012

Keywords

Comments

a(7) > 2*10^5 if it exists. - Robert Price, Jul 07 2014

Crossrefs

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(13^n+n^13-1)];
    
  • Mathematica
    Select[Range[0, 5000], PrimeQ[13^# + #^13 - 1] &]
  • PARI
    is(n)=ispseudoprime(13^n+n^13-1) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(6) from Robert Price, May 24 2014

A216592 Numbers m such that 8^m + m^8 + 1 is prime.

Original entry on oeis.org

0, 108, 27018
Offset: 1

Views

Author

Vincenzo Librandi, Sep 09 2012

Keywords

Comments

Next term > 2*10^4.
a(4) > 10^5. - Robert Price, Oct 08 2015

Examples

			8^0 + 0^8 + 1 = 2, which is prime, so 0 is in the sequence.
		

Crossrefs

Cf. Numbers m such that k^m + m^k + 1 is prime: A100357 (k=2), A215441 (k=3), A216423 (k=4), A215442 (k=5), A243934 (k=6), A215444 (k=7), this sequence (k=8), A216618 (k=10), A216375 (k=11), A216421 (k=13).
Cf. Numbers m such that k^m + m^k - 1 is prime: A215439 (k=2), A215440 (k=3), A216424 (k=4), A215443 (k=5), A216425 (k=6), A215445 (k=7), A216591 (k=8), A216619 (k=10), A215446 (k=11), A216420 (k=13), A216422 (k=19).
Cf. Primes of form k^m + m^k + 1: A035325 (k=2), A215436 (k=3), A215438 (k=5).
Cf. Primes of form k^m + m^k - 1: A215434 (k=2), A215435 (k=3), A215437 (k=5).

Programs

  • Mathematica
    Select[Range[0, 10000], PrimeQ[8^# + #^8 + 1] &]
  • PARI
    is(n)=ispseudoprime(8^n+n^8+1) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(3) from Robert Price, Oct 08 2015
Showing 1-3 of 3 results.