A215448 a(0)=1, a(1)=0, a(n) = a(n-1) + a(n-2) + Sum_{i=0...n-1} a(i).
1, 0, 2, 5, 15, 43, 124, 357, 1028, 2960, 8523, 24541, 70663, 203466, 585857, 1686908, 4857258, 13985917, 40270843, 115955271, 333879896, 961368845, 2768151264, 7970573896, 22950352843, 66082907265, 190278147899, 547884090854, 1577569365297, 4542429947992
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,0,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{3,0,-1},{1,0,2},30] (* Harvey P. Dale, Jan 26 2017 *)
-
Python
a = [1]*33 a[1]=0 sum = a[0]+a[1] for n in range(2,33): print(a[n-2], end=', ') a[n] = a[n-1] + a[n-2] + sum sum += a[n]
Formula
a(0)=1, a(1)=0, for n>=2, a(n) = a(n-1) + a(n-2) + (a(0)+...+a(n-1)).
Conjecture: a(n) = +3*a(n-1) -a(n-3) = A076264(n) -3 *A076264(n-1) +2*A076264(n-2). G.f. (2*x-1)*(x-1) / ( 1-3*x+x^3 ). - R. J. Mathar, Aug 11 2012
Proof of the above conjecture: we have a(n) - a(n-1) = a(n-1) + a(n-2) + (a(0) + ... + a(n-1)) - a(n-2) - a(n-3) - (a(0) + ... + a(n-2)), which after simple algebra implies a(n) - a(n-1) = 2*a(n-1) - a(n-3), so the Mathar's formula holds true (see also Witula's comment above). - Roman Witula, Aug 27 2012
Comments