cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215484 a(n) = 21*a(n-2) + 7*a(n-3), with a(0)=a(1)=0, a(2)=9.

Original entry on oeis.org

0, 0, 9, 0, 189, 63, 3969, 2646, 83790, 83349, 1778112, 2336859, 37923795, 61520823, 812757708, 1557403848, 17498557629, 38394784764, 378371537145, 928780383447, 8214565773393, 22152988812402, 179007343925382, 522714725474193, 3914225144119836, 12230060642435727, 85857731104835907, 284230849499989119
Offset: 0

Views

Author

Roman Witula, Aug 13 2012

Keywords

Comments

We have a(n)=C(n;3), where C(n;d), n=1,2,..., d in C, denote one of the quasi-Fibonacci numbers defined in the comments to A121449 and in the Witula-Slota-Warzynski paper. Its conjugate sequences A(n;3) and B(n;3) are discussed in A121458 and A215492, respectively. Similarly as in A121458, we deduce that each of the elements a(3*n), a(3*n+1), a(3*n+2) are divisible by 9*7^n for every n=0,1,... . Some additional facts connecting all three sequences a(n), A121458, and A215492 are given in the comments to A121458.

Examples

			We have a(5)=7*a(2), a(4)=21*a(2), a(4)=3*a(5), a(6)=21*a(4), a(7)=14*a(4), 3*a(7)=2*a(6), a(8)-a(9)=7*a(5), a(9)=21*a(6), 2*a(9)=63*a(7), a(12)=455*a(9) - especially the values and the relations connecting with a(8) and a(9) are very attractive.
		

Programs

  • Magma
    I:=[0,0,9]; [n le 3 select I[n] else 21*Self(n-2) +7*Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 19 2018
  • Mathematica
    LinearRecurrence[{0,21,7}, {0,0,9}, 50]
    CoefficientList[Series[9x^2/(1-21x^2-7x^3),{x,0,30}],x] (* Harvey P. Dale, Jul 06 2021 *)
  • PARI
    x='x+O('x^30); concat([0,0], Vec(9*x^2/(1-21*x^2-7*x^3))) \\ G. C. Greubel, Apr 19 2018
    

Formula

a(n) = (1/7)*((c(2)-c(4))*(1+3*c(1))^n + (c(4)-c(1))*(1+3*c(2))^n + (c(1)-c(2))*(1+3*c(4))^n), where c(j):=2*cos(2*Pi*j/7) (for the proof see formula (3.17) for d=3 in the Witula-Slota-Warzynski paper).
G.f.: 9*x^2/(1-21*x^2-7*x^3).