A215494 a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) with a(1)=7, a(2)=21, a(3)=70.
7, 21, 70, 245, 882, 3234, 12005, 44933, 169099, 638666, 2417807, 9167018, 34790490, 132119827, 501941055, 1907443237, 7249766678, 27557748813, 104759610858, 398257159370, 1514069805269, 5756205681709, 21884262613787, 83201447389466, 316323894905207
Offset: 1
Examples
We have a(3)=5*7^2 and a(6)=5*7^4, which implies that s(1)^12 + s(2)^12 + s(4)^12 = 49*(s(1)^6 + s(2)^6 + s(4)^6). We also have a(9) = (a(1) + a(3))*7^49.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- B. C. Berndt, A. Zaharescu, Finite trigonometric sums and class numbers, Math. Ann. 330 (2004), 551-575.
- B. C. Berndt, L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.
- L. Bankoff and J. Garfunkel, The Heptagonal Triangle, Math. Magazine, 46 (1973), 7-19.
- Z.-G. Liu, Some Eisenstein series identities related to modular equations of the seventh order, Pacific J. Math. 209 (2003), 103-130.
- D. Y. Savio and E. R. Suryanarayan, Chebyshev polynomials and regular polygons, Amer. Math. Monthly, 100 (1993), 657-661.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
- Index entries for linear recurrences with constant coefficients, signature (7, -14, 7).
Crossrefs
See A122068.
Programs
-
Magma
I:=[7,21,70]; [n le 3 select I[n] else 7*Self(n-1)-14*Self(n-2)+7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 01 2016
-
Mathematica
LinearRecurrence[{7,-14,7}, {7,21,70}, 50]
-
PARI
polsym(x^3 - 7*x^2 + 14*x - 7, 30) \\ (includes a(0)=3) Joerg Arndt, May 31 2017
-
PARI
x='x+O('x^30); Vec((7-28*x+21*x^2)/(1-7*x+14*x^2-7*x^3)) \\ G. C. Greubel, Apr 23 2018
Formula
Equals 7*A122068. - M. F. Hasler, Aug 25 2012
a(n) = s(1)^(2n) + s(2)^(2n) + s(4)^(2n), where s(j) := 2*Sin(2*Pi*j/7) (for the sums of the respective odd powers see A215493, see also A094429, A115146). For the proof of these formula see Witula-Slota's paper.
G.f.: (7 - 28*x + 21*x^2)/(1 - 7*x + 14*x^2 - 7*x^3) = -d(log(1 - 7*x + 14*x^2 - 7*x^3))/dx.
Comments