cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A215560 a(n) = 3*a(n-1) + 46*a(n-2) + a(n-3) with a(0)=a(1)=3, a(2)=101.

Original entry on oeis.org

3, 3, 101, 444, 5981, 38468, 390974, 2948431, 26868565, 216624495, 1888775906, 15657923053, 134074085330, 1124375492334, 9556192325235, 80523923708399, 682280993578341, 5760499663646612, 48746948619251921, 411906111379078256, 3483838470286469746, 29447943482916260935
Offset: 0

Views

Author

Roman Witula, Aug 16 2012

Keywords

Comments

The Ramanujan-type sequence number 6 for the argument 2Pi/7 (see also A214683, A215112, A006053, A006054, A215076, A215100, A120757 for the numbers: 1, 1a, 2, 2a, 3, 4 and 5 respectively).
The sequence a(n) is one of the three special sequences (the remaining two are A215569 and A215572) connected with the following recurrence relation: T(n):=49^(1/3)*T(n-2)+T(n-3), with T(0)=3, T(1)=0, and T(2)=2*49^(1/3) - see the comments to A214683.
It can be proved that
T(n) = (c(1)^4/c(2))^(n/3) + (c(2)^4/c(4))^(n/3) + (c(4)^4/c(1))^(n/3), where c(j):=2*cos(2*Pi*j/7), and the following decomposition hold true:
T(n) = at(n) + bt(n)*7^(1/3) + ct(n)*49^(1/3), where sequences at(n), bt(n), and ct(n) satisfy the following system of recurrence equations: at(n)=7*bt(n-2)+at(n-3),
bt(n)=7*ct(n-2)+bt(n-3), ct(n)=at(n-2)+ct(n-3), with at(0)=3, at(1)=at(2)=bt(0)=bt(1)=bt(2)=ct(0)=ct(1)=0, ct(2)=2 - for details see the first Witula reference.
It follows that a(n)=at(3*n), bt(3*n)=ct(3*n)=0.
Every difference of the form a(n)-a(n-2)-a(n-3) is divisible by 3. Because the difference a(n+1)-a(n) is congruent to the difference a(n-4)-a(n-2) modulo 3 we easily deduce that a(6)-a(5) and a(7)-a(6)-2 are both divisible by 3.

References

  • R. Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, 46, 1}, {3, 3, 101}, 50]
  • PARI
    Vec((3-6*x-46*x^2)/(1-3*x-46*x^2-x^3) + O(x^40)) \\ Michel Marcus, Apr 20 2016

Formula

a(n) = (c(1)^4/c(2))^n + (c(2)^4/c(4))^n + (c(4)^4/c(1))^n, where c(j) = 2*cos(2*Pi*j/7).
G.f.: (3-6*x-46*x^2)/(1-3*x-46*x^2-x^3).

Extensions

More terms from Michel Marcus, Apr 20 2016

A215572 a(n) = 3*a(n-1) + 46*a(n-2) + a(n-3) with a(0)=2, a(1)=5, a(2)=106.

Original entry on oeis.org

2, 5, 106, 550, 6531, 44999, 435973, 3384404, 30252969, 246877464, 2135653370, 17793576423, 151867661753, 1276243154087, 10832435479322, 91356359187721, 773637352766062, 6534137016412674, 55281085635664595, 467187197014742851, 3951025667301212597, 33398969150217473532
Offset: 0

Views

Author

Roman Witula, Aug 16 2012

Keywords

Comments

The Ramanujan-type sequence number 8 for the argument 2Pi/7 (see also A214683, A215112, A006053, A006054, A215076, A215100, A120757, A215560, A215569 for the numbers: 1, 1a, 2, 2a, 3-7 respectively). The sequence a(n) is one of the three special sequences (the remaining two are A215560 and A215569) connected with the following recurrence relation:
(c(1)^4/c(2))^(n/3) + (c(2)^4/c(4))^(n/3) + (c(4)^4/c(1))^(n/3) = at(n) + bt(n)*7^(1/3) + ct(n)*49^(1/3), where c(j):=2*cos(2*Pi*j/7), and the sequences at(n), bt(n), and ct(n) are defined in comments to A215560 (see also A215569). It follows that a(n)=ct(3*n+2), at(3*n+2)=bt(3*n+2)=0, which implies the first formula below.
We note that if a(n), a(n+1) and a(n+2) are all odd for some n in N then a(n+3) is even, a(n+4) is odd, a(n+5) and a(n+6) are both even, and the numbers a(n+7), a(n+8), a(n+9) are all odd again. In consequence, this situation hold for every n of the form 7*k+4, k=0,1,..., in the other words cyclical through all sequence a(n), n=4,5,... (from n=1 whenever we start from odd-even-even sequence).

Examples

			From 4*a(1)+5*a(2)=a(3) we obtain 4*((c(1)^4/c(2))^(5/3) + (c(2)^4/c(4))^(5/3) + (c(4)^4/c(1))^(5/3)) + 5*((c(1)^4/c(2))^(8/3) + (c(2)^4/c(4))^(8/3) + (c(4)^4/c(1))^(8/3)) = (4 + 5*c(1)^4/c(2))*((c(1)^4/c(2))^(5/3) + (4 + 5*c(2)^4/c(4))*((c(2)^4/c(4))^(5/3) + (4 + 5*c(4)^4/c(1))*((c(4)^4/c(1))^(5/3) = (c(1)^4/c(2))^(11/3) + (c(2)^4/c(4))^(11/3) + (c(4)^4/c(1))^(11/3) = 550*49^(1/3).
		

References

  • R. Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,46,1}, {2,5,106}, 50]
    CoefficientList[Series[(2 - x - x^2)/(1 - 3*x - 46*x^2 - x^3), {x,0,50}], x] (* G. C. Greubel, Apr 16 2017 *)
  • PARI
    Vec((2-x-x^2)/(1-3*x-46*x^2-x^3) + O(x^40)) \\ Michel Marcus, Apr 20 2016

Formula

49^(1/3)*a(n) = (c(1)^4/c(2))^(n+2/3) + (c(2)^4/c(4))^(n+2/3) + (c(4)^4/c(1))^(n+2/3) = (c(1)*(c(1)/c(2))^(1/3))^(3*n+2) + (c(2)*(c(2)/c(4))^(1/3))^(3*n+2) + (c(4)*(c(4)/c(1))^(1/3))^(3*n+2).
G.f.: (2-x-x^2)/(1-3*x-46*x^2-x^3).

Extensions

More terms from Michel Marcus, Apr 20 2016

A217053 a(n) = 3*a(n-1) + 24*a(n-2) + a(n-3), with a(0) = 2, a(1) = 5, and a(2) = 62.

Original entry on oeis.org

2, 5, 62, 308, 2417, 14705, 102431, 662630, 4460939, 29388368, 195890270, 1297452581, 8623112591, 57204089987, 379864424726, 2521114546457, 16737293922782, 111098495308040, 737511654617345, 4895636145167777, 32498286641627651, 215727639063526946
Offset: 0

Views

Author

Roman Witula, Sep 25 2012

Keywords

Comments

The Ramanujan type sequence number 9 for the argument 2*Pi/9 defined by the following relation a(n)*3^(-n + 1/3) = ((-1)^n)*(c(1) - 1/3)^(n + 2/3) + ((-1)^n)*(c(2) - 1/3)^(n + 2/3) + (1/3 - c(4))^(n + 2/3), where c(j) := 2*cos(2*Pi*j/9). We note that c(4) = -cos(Pi/9). The conjugate with a(n) are the sequences A217052 and A217069.
In Witula's et al.'s paper the following sequence is discussed: S(n) := sum{j=0,1,2} (1/3 - c(2^j))^(n/3). It is proved that S(n+3) = (3^(1/3))*S(n+1) + S(n)/3, n=0,1,... Moreover the following decomposition holds true S(n) = x(n) + y(n)*3^(1/3) + z(n)*9^(1/3), which implies the system of recurrence relations: x(n+3) = 3*z(n+1) + x(n)/3, y(n+3) = x(n+1) + y(n)/3, z(n+3) = y(n+1) + z(n)/3, x(0)=3, y(0)=z(0)=x(1)=y(1)=z(1)=x(2)=z(2)=0, y(2)=2. Then it can be generated the relations X'(n+9) - 3*X'(n+6) - 24*X'(n+3) - X'(n) = 0, where X'(n) = X(n)*3^n for every X=x,y,z and n=0,1,..., from which we obtain that x(3*n+1)=x(3*n+2)=y(3*n)=y(3*n+1)=z(3*n)=z(3*n+2)=0 and a(n) = y(3*n+2)*3^n, A217052(n) = x(3*n)*3^(n-1), and A217069(n) = z(3*n+1)*3^(n-1).
Each a(n)+1 is divisible by 3 but which a(n)+1 are divisible by 9 - it is a question?

Examples

			We have 2*3^(1/3) = (c(1) - 1/3)^(2/3) + (c(2) - 1/3)^(2/3) + (1/3 - c(4))^(2/3), and 5*3^(-2/3) = -(c(1) - 1/3)^(5/3) - (c(2) - 1/3)^(5/3) + (1/3 - c(4))^(5/3).
Moreover we have 12*a(1) + a(0) = a(2), 5*a(2) = a(3) + a(0).
		

References

  • Roman Witula, E. Hetmaniok, and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the 15th International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012, in review.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,24,1}, {2,5,62}, 30]
  • PARI
    Vec((2-x-x^2)/(1-3*x-24*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012

Formula

G.f.: (2-x-x^2)/(1-3*x-24*x^2-x^3).

A217069 a(n) = 3*a(n-1) + 24*a(n-2) + a(n-3), with a(0)=0, a(1)=2, and a(2)=7.

Original entry on oeis.org

0, 2, 7, 69, 377, 2794, 17499, 119930, 782560, 5243499, 34631867, 230522137, 1527974718, 10151087309, 67355177296, 447219602022, 2968334148479, 19705628071261, 130804123379301, 868315777996646, 5763951923164423, 38262238564792074, 253989877628319020
Offset: 0

Views

Author

Roman Witula, Sep 26 2012

Keywords

Comments

The Ramanujan sequence number 11 for the argument 2*Pi/9 defined by the relation a(n)*9^(1/3) = (3^(n-1))*(((-1)^(n-1))*(c(1) - 1/3)^(n + 1/3) + ((-1)^(n-1))*(c(2) - 1/3)^(n + 1/3) + (1/3 - c(4))^(n + 1/3)), where c(j) := 2*cos(2*Pi*j/9). The sequences A217052 and A217053 are conjugate with the sequence a(n). For more information on these connections - see Comments in A217053.
The 3-valuation of the sequence a(n) is equal to (0,2,1).

Examples

			We have a(4)-5*a(3)=32, 8*a(4)-a(5)=222, a(9)-a(6)=5226000. Furthermore from a(0)=0 we get (c(1) - 1/3)^( 1/3) + (c(2) - 1/3)^(1/3) = (1/3 - c(4))^(1/3), while from a(3)=69 we obtain 23*9^(-1/6) = (c(1) - 1/3)^(10/3) + (c(2) - 1/3)^(10/3) + (1/3 - c(4))^(10/3).
		

References

  • Roman Witula, E. Hetmaniok, and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the 15th International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012, in review.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,24,1}, {0,2,7}, 30]
  • PARI
    Vec((2+x)/(1-3*x-24*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012

Formula

G.f.: x*(2+x)/(1-3*x-24*x^2-x^3).

A215139 a(n) = (a(n-1) - a(n-3))*7^((1+(-1)^n)/2) with a(6)=5, a(7)=4, a(8)=22.

Original entry on oeis.org

5, 4, 22, 17, 91, 69, 364, 273, 1428, 1064, 5537, 4109, 21315, 15778, 81683, 60368, 312130, 230447, 1190553, 878423, 4535832, 3345279, 17267992, 12732160, 65708167, 48440175, 249956105, 184247938, 950654341, 700698236, 3615152086, 2664497745, 13746596563, 10131444477
Offset: 6

Views

Author

Roman Witula, Aug 04 2012

Keywords

Comments

The Ramanujan-type sequence the number 9 for the argument 2*Pi/7. The sequence is connecting with the following decomposition: (s(4)/s(1))^(1/3)*s(1)^n + (s(1)/s(2))^(1/3)*s(2)^n + (s(2)/s(4))^(1/3)*s(4)^n = x(n)*(4-3*7^(1/3))^(1/3) + y(n)*(11-3*49^(1/3))^(1/3), where s(j) := sin(2*Pi*j/7), x(0)=1, x(1)=-7^(1/6)/2, x(2)=y(0)=y(1)=0, y(2)=7^(1/3)/4 and X(n)=sqrt(7)*(X(n-1)-X(n-3)) for every n=3,4,..., and X=x or X=y. It could be deduced the formula 4*y(n) = a(n)*7^(1/3 + (3+(-1)^n)/4), which implies a(0)=0, a(1)= 0, a(2)= 1/7, a(3)=1/7, a(4)=1, a(5)=6/7, i.e., A163260(n)=7*a(n) for every n=0,1,...,5. The sequence a(n) is discussed in third Witula paper.

Examples

			From values of x(2),y(2) and the identity 2*sin(t)^2=1-cos(2*t) we obtain (s(4)/s(1))^(1/3)*c(1) + (s(1)/s(2))^(1/3)*c(4) + (s(2)/s(4))^(1/3)*c(1) = (4-3*7^(1/3))^(1/3) - (1/2)*(7*(11-3*49^(1/3)))^(1/3), where c(j):=cos(2*Pi*j/7). Further, from values of x(1),x(3),y(1),y(3) and the identity 4*sin(t)^3=3*sin(t)-sin(3*t) we obtain (s(4)/s(1))^(1/3)*s(4) + (s(1)/s(2))^(1/3)*s(1) + (s(2)/s(4))^(1/3)*s(2) = (-3*7^(1/6)/2 +4*7^(1/2))*(4-3*7^(1/3))^(1/3) - 7^(5/6)*(11-3*49^(1/3))^(1/3).
		

References

  • R. Witula, E. Hetmaniok and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.

Crossrefs

Programs

  • Magma
    I:=[5,4,22,17,91,69]; [n le 6 select I[n] else 7*Self(n-2) - 14*Self(n-4) + 7*Self(n-6): n in [1..30]]; // G. C. Greubel, Apr 19 2018
  • Mathematica
    LinearRecurrence[{0,7,0,-14,0,7}, {5,4,22,17,91,69}, {1,50}] (* G. C. Greubel, Apr 19 2018 *)
  • PARI
    Vec(-x*(1+x)*(6*x^4+x^3-12*x^2-x+5)/(-1+7*x^2-14*x^4+7*x^6) + O(x^50)) \\ Michel Marcus, Apr 20 2016
    

Formula

G.f.: -x*(1+x)*(6*x^4+x^3-12*x^2-x+5) / ( -1+7*x^2-14*x^4+7*x^6 ). - R. J. Mathar, Sep 14 2012

Extensions

More terms from Michel Marcus, Apr 20 2016
Showing 1-5 of 5 results.