A215594 Expansion of f(-x, -x^4) / f(x, x^4) in powers of x where f(,) is Ramanujan's two-variable theta function.
1, -2, 2, -2, 0, 2, -4, 6, -4, 0, 6, -12, 14, -10, 0, 14, -26, 30, -22, 0, 28, -52, 60, -42, 0, 54, -100, 112, -78, 0, 100, -180, 202, -140, 0, 174, -314, 350, -240, 0, 296, -532, 588, -402, 0, 492, -876, 966, -658, 0, 794, -1412, 1550, -1050, 0, 1260, -2232
Offset: 0
Examples
1 - 2*x + 2*x^2 - 2*x^3 + 2*x^5 - 4*x^6 + 6*x^7 - 4*x^8 + 6*x^10 - 12*x^11 + ... From _Peter Bala_, Jun 10 2025: (Start) G.f.: A(q) = f(-q, -q^4) / f(q, q^4). Simple continued fraction expansions of A(1/(2*m)): m = 2 [0; 1 1 2 7 1 1 1 10 1 2 12 82 1 6 1 48 ...] m = 3 [0; 1 2 2 17 1 1 2 14 2 2 24 318 1 1 1 1 ...] m = 4 [0; 1 3 2 31 1 1 3 18 3 2 40 810 2 7 2 161 ...] m = 5 [0; 1 4 2 49 1 1 4 22 4 2 60 1654 2 1 1 1 ...] m = 6 [0; 1 5 2 71 1 1 5 26 5 2 84 2946 3 7 1 1 ...] m = 7 [0; 1 6 2 97 1 1 6 30 6 2 112 4782 3 1 1 1 ...] m = 8 [0; 1 7 2 127 1 1 7 34 7 2 144 7258 4 7 1 2 ...] m = 9 [0; 1 8 2 161 1 1 8 38 8 2 180 10470 4 1 1 1 ...] m = 10 [0; 1 9 2 199 1 1 9 42 9 2 220 14514 5 7 1 3 ...] m = 11 [0; 1 10 2 241 1 1 10 46 10 2 264 19486 5 1 1 1 ...] m = 12 [0; 1 11 2 287 1 1 11 50 11 2 312 25482 6 7 1 4 ...] ... The sequence of the 4th partial denominators [7, 17, 31, 49, ...] appears to be given by the polynomial 2*m^2 - 1 for m >= 2. The sequence of the 11th partial denominators [12, 24, 40, 60, ...] appears to be given by the polynomial 2*(m^2 + m) for m >= 2. The sequence of the 12th partial denominators [82, 318, 810, 1654, ...] appears to be given by the polynomial 2*(8*m^3 - 8*m^2 + 6*m - 3) for m >= 2. The sequence of the 16th partial denominators appears to become quasi-polynomial in m for m >= 5. (End)
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; A215594[n_] := SeriesCoefficient[f[-x, -x^4]/f[x, x^4], {x, 0, n}]; Table[A215594[n], {n,0,50}] (* G. C. Greubel, Jun 18 2017 *)
-
PARI
{a(n) = local(A, s); if( n<0, 0, A = x * O(x^n); s = sqrtint( 40*n + 9); polcoeff( sum( k=(-s + 6)\10, (s - 3)\10, (-1)^k * x^((5*k + 3)*k/2), A) / sum( k=(-s + 6)\10, (s - 3)\10, x^((5*k + 3)*k/2), A), n))}
Formula
Euler transform of period 10 sequence [ -2, 1, 0, -2, 0, -2, 0, 1, -2, 0, ...].
a(5*n + 4) = 0.
Comments