A215624 G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^5).
1, 2, 13, 130, 1518, 19358, 261323, 3670828, 53100530, 785657529, 11834135909, 180863294507, 2797643204500, 43715591710804, 689030031494554, 10941710269299893, 174889301792724294, 2811464199460768704, 45426696813655278251
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 13*x^2 + 130*x^3 + 1518*x^4 + 19358*x^5 +... Related expansions. A(x)^5 = 1 + 10*x + 105*x^2 + 1250*x^3 + 16120*x^4 + 219162*x^5 +... A(x)^6 = 1 + 12*x + 138*x^2 + 1720*x^3 + 22803*x^4 + 315840*x^5 +... where A(x) = 1 + x*(A(x) + A(x)^5) + x^2*A(x)^6. The logarithm of the g.f. equals the series: log(A(x)) = (1 + A(x)^4)*x + (1 + 2^2*A(x)^4 + A(x)^8)*x^2/2 + (1 + 3^2*A(x)^4 + 3^2*A(x)^8 + A(x)^12)*x^3/3 + (1 + 4^2*A(x)^4 + 6^2*A(x)^8 + 4^2*A(x)^12 + A(x)^16)*x^4/4 + (1 + 5^2*A(x)^4 + 10^2*A(x)^8 + 10^2*A(x)^12 + 5^2*A(x)^16 + A(x)^20)*x^5/5 +... more explicitly, log(A(x)) = 2*x + 22*x^2/2 + 320*x^3/3 + 4886*x^4/4 + 76962*x^5/5 + 1236784*x^6/6 + 20152260*x^7/7 +...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..807
Programs
-
PARI
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(A+x*O(x^n))^(4*j))*x^m/m))); polcoeff(A, n)}
-
PARI
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1+x*A)*(1+x*A^5)+x*O(x^n)); polcoeff(A, n)} for(n=0,21,print1(a(n),", "))
Formula
G.f. satisfies A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * A(x)^(4*k)).
The formal inverse of g.f. A(x) is (sqrt((1-x^4)^2 + 4*x^5) - (1+x^4))/(2*x^5).
a(n) = Sum_{k=0..n} binomial(n+4*k+1,k) * binomial(n+4*k+1,n-k) / (n+4*k+1). - Seiichi Manyama, Jul 19 2023
Comments