cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A115784 Expansion of b(q) / a(q) in powers of q of cubic AGM theta function.

Original entry on oeis.org

1, -9, 54, -324, 1989, -12204, 74844, -459072, 2815830, -17271468, 105938118, -649793448, 3985642908, -24446767374, 149949318096, -919745243064, 5641448209173, -34602992662356, 212244632371188, -1301846473509156, 7985145356345268, -48978545212087776
Offset: 0

Views

Author

Michael Somos, Jan 31 2006

Keywords

Examples

			1 - 9*q + 54*q^2 - 324*q^3 + 1989*q^4 - 12204*q^5 + 74844*q^6 - 459072*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    QP = QPochhammer;  s = QP[q]^3/(QP[q]^3 + 9*q*QP[q^9]^3) + O[q]^30; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *)
    eta[q_] := q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[eta[q]^3/ (eta[q]^3 + 9*eta[q^9]^3), {q,0,n}]; Table[a[n], {n,0,50}] (* G. C. Greubel, Feb 11 2018 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 / (eta(x + A)^3 + 9 * x * eta(x^9 + A)^3), n))}

Formula

Expansion of eta(q)^3 / (eta(q)^3 + 9 * eta(q^9)^3) in powers of q.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (1 - u*v)^3 - (1 - u^3) * (1 - v^3).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (1 + 2*u)^3 * v^3 - 9 * u * (1 + u + u^2).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (1 + 2*u1) * (1 + 2*u2) * u3*u6 - 3 * (u1 + u2 + u1*u2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = (1/3) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A058091.
G.f.: 1 / (1 + 9 * x * (Product_{k>0} (1 - x^(9*k)) / (1 - x^k))^3).
Convolution inverse is A215690. Convolution with A004016 is A005928.
a(n) ~ (-1)^n * 8 * sqrt(3) * Pi^(5/2) * exp(Pi*n/sqrt(3)) / Gamma(1/6)^3. - Vaclav Kotesovec, Nov 14 2015

A215711 Expansion of a(q) * b(q)^3 in powers of q where a(), b() are cubic AGM theta functions.

Original entry on oeis.org

1, -3, -27, 159, -219, -378, 1431, -1032, -1755, 4533, -3402, -3996, 11607, -6594, -9288, 20034, -14043, -14742, 40797, -20580, -27594, 54696, -35964, -36504, 93015, -47253, -59346, 122631, -75336, -73170, 180306, -89376, -112347, 211788, -132678, -130032
Offset: 0

Views

Author

Michael Somos, Aug 21 2012

Keywords

Examples

			G.f. = 1 - 3*q - 27*q^2 + 159*q^3 - 219*q^4 - 378*q^5 + 1431*q^6 - 1032*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[(1 + 9*(eta[q^9]/eta[q])^3)*(eta[q]^3/eta[q^3])^4, {q, 0, 50}], q] (* G. C. Greubel, Aug 10 2018 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 + 9 * x * (eta(x^9 + A) / eta(x + A))^3) * (eta(x + A)^3 / eta(x^3 + A))^4, n))}

Formula

Expansion of (1 + 9 * q * (eta(q^9) / eta(q))^3) * (eta(q)^3 / eta(q^3))^4 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 3^5 (t/i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A198956.
G.f.: 1 - 3 * (Sum_{k>0} k^3 * x^k / (1 - x^k) - 3 * (3*k)^3 * x^(3*k) / (1 - x^(3*k))).
Convolution of A215690 and A133078. Convolution of A004016 and A109041.

A290405 Expansion of (a(q) / b(q))^3 in powers of q where a(), b() are cubic AGM theta functions.

Original entry on oeis.org

1, 27, 324, 2430, 13716, 64557, 265356, 983556, 3353076, 10670373, 32031288, 91455804, 249948828, 657261999, 1669898592, 4113612864, 9853898292, 23010586596, 52494114852, 117209543940, 256559365656, 551320914321, 1164556135440, 2420715030912, 4956677613180
Offset: 0

Views

Author

Seiichi Manyama, Jul 30 2017

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1 + 27*x*Product[(1 + x^k + x^(2*k))^12, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 30 2017 *)

Formula

a(n) = 27 * A121590(n) for n > 0.
G.f.: (1 + 9*(eta(q^9)/eta(q))^3)^3 = 1 + 27*(eta(q^3)/eta(q))^12 = 1 + (c(q) / b(q))^3.
Showing 1-3 of 3 results.