A215794 a(n) = -7^n*A(2*n+1), where A(n) = A(n-1) + A(n-2) + A(n-3)/7, with A(0)=3, A(1)=1, A(2)=3.
-1, -31, -609, -11711, -224833, -4315871, -82846113, -1590286719, -30526618241, -585978870687, -11248256653025, -215917815567167, -4144686996149441, -79560041170858591, -1527208244431770145, -29315784501060168447, -562736106255347592449
Offset: 0
Examples
We have -31*sqrt(7) = t(1)^3 + t(2)^3 + t(4)^3.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5
- Index entries for linear recurrences with constant coefficients, signature (21,-35,7).
Programs
-
Magma
m:=17; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(-(1+10*x-7*x^2)/(1-21*x+35*x^2-7*x^3))); // Bruno Berselli, Aug 30 2012 -
Magma
I:=[-1, -31, -609]; [n le 3 select I[n] else 21*Self(n-1)-35*Self(n-2)+7*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Mar 19 2013
-
Mathematica
LinearRecurrence[{21, -35, 7}, {-1, -31, -609}, 17] (* Bruno Berselli, Aug 30 2012 *)
Formula
G.f.: -(1+10*x-7*x^2)/(1-21*x+35*x^2-7*x^3). [Bruno Berselli, Aug 30 2012]
Comments