cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215828 a(n) = 7^(floor(n/3))*A(n), where A(n) = A(n-1) + A(n-2) + A(n-3)/7, with A(0)=3, A(1)=1, A(2)=3.

Original entry on oeis.org

3, 1, 3, 31, 53, 87, 1011, 1673, 2771, 32119, 53189, 88079, 1020995, 1690737, 2799811, 32454831, 53744245, 88998887, 1031656755, 1708393209, 2829048851, 32793751175, 54305486341, 89928286367, 1042430160131, 1726233651041, 2858592097539, 33136210400191
Offset: 0

Views

Author

Roman Witula, Aug 24 2012

Keywords

Comments

The Berndt-type sequence number 13 for the argument 2Pi/7
defined by the relation ((-sqrt(7))^n)*A(n) = t(1)^n + t(2)^n + t(4)^n = (-sqrt(7) + 4*s(1))^n + (-sqrt(7) + 4*s(2))^n + (-sqrt(7) + 4*s(4))^n, where t(j) := tan(2*Pi*j/7) and s(j) := sin(2*Pi*j/7), and the fact that all numbers 7^(floor(n/3))*A(n) are integers. We note that ((-sqrt(7))^n)*A(n) = B(n), where B(n) is defined in the comments to A215575. For more details see also A108716, A215794, Witula-Slota's (Section 6) and Witula's (Remark 11) papers.

Examples

			We have A(3)=31/7, A(4)=53/7 and A(5)=87/7. On the other hand we have a(2)+a(3)+a(4)=a(5).
		

Crossrefs

Programs

  • Magma
    /* By definition: */ i:=28; I:=[3,1,3]; A:=[m le 3 select I[m] else Self(m-1)+Self(m-2)+Self(m-3)/7: m in [1..i]]; [7^(Floor((n-1)/3))*A[n]: n in [1..i]]; // Bruno Berselli, Oct 28 2012
  • Mathematica
    CoefficientList[Series[(x^8 - 5 x^7 + 25 x^6 + 6 x^5 - 22 x^4 + 62 x^3 - 3 x^2 - x - 3)/(x^9 + 25 x^6 + 31 x^3 - 1), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 19 2013 *)

Formula

G.f.: (x^8-5*x^7+25*x^6+6*x^5-22*x^4+62*x^3-3*x^2-x-3)/(x^9+25*x^6+31*x^3-1). [Colin Barker, Oct 28 2012]