A215945 a(n) = - 3^n*A(2*n+1), where A(n) = 3*A(n-1) + A(n-2) - A(n-3)/3, with A(0)=A(1)=3, A(2)=11.
-3, -105, -3387, -108945, -3504051, -112702329, -3624894315, -116589061665, -3749904995427, -120609834867081, -3879226882922139, -124769271310005681, -4013008656895890963, -129072153032843014809, -4151404124161560449739
Offset: 0
Examples
We have 35*(t(1) - t(2) + t(3)) = t(1)^3 - t(2)^3 + t(4)^3, t(1)^7 - t(2)^7 + t(4)^7 = -5*81*269*sqrt(3) and t(1)^9 - t(2)^9 + t(4)^9 = -9*389339*sqrt(3).
References
- D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the ninth order, (submitted, 2012).
- R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math. (in press, 2012).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..600
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
- Index entries for linear recurrences with constant coefficients, signature (33,-27,3).
Programs
-
Magma
m:=17; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(-3*(1+x)^2/(1-33*x+27*x^2-3*x^3))); // Bruno Berselli, Aug 29 2012 -
Magma
I:=[-3, -105, -3387]; [n le 3 select I[n] else 33*Self(n-1)-27*Self(n-2)+3*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Mar 19 2013
-
Mathematica
LinearRecurrence[{33, -27, 3}, {-3, -105, -3387}, 17] (* Bruno Berselli, Aug 29 2012 *) CoefficientList[Series[-3 (1 + x)^2/(1 - 33 x + 27 x^2 - 3 x^3), {x, 0, 20}], x] (* Vincenzo Librandi, Mar 19 2013 *)
Formula
sqrt(3)*a(n) = t(1)^(2*n+1) - t(2)^(2*n+1) + t(4)^(2*n+1) = (-sqrt(3) + 4*s(1))^(2*n+1) + (-sqrt(3) - 4*s(2))^(2*n+1) + (-sqrt(3) + 4*s(4))^(2*n+1), where t(j) := tan(2*Pi*j/9) and s(j) := sin(2*Pi*j/9).
a(n) = 33*a(n-1) - 27*a(n-2) + 3*a(n-3).
G.f.: -3*(1+x)^2/(1-33*x+27*x^2-3*x^3). - Bruno Berselli, Aug 29 2012
Comments