cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215948 a(n) = 3^n*A(2*n), where A(n) = 3*A(n-1) + A(n-2) - A(n-3)/3 with A(0)=A(1)=3, A(2)=11.

Original entry on oeis.org

3, 33, 1035, 33273, 1070163, 34420113, 1107069147, 35607149289, 1145248319907, 36835122733569, 1184744167018155, 38105444942752473, 1225602095969542131, 39419576386041628017, 1267869080483024344443, 40779027899804588036553, 1311593714249667872790339
Offset: 0

Views

Author

Roman Witula, Aug 28 2012

Keywords

Comments

The Berndt-type sequence number 12 for the argument 2*Pi/9 defined by the first trigonometric relations from the section "Formula" below (it is the complement of the sequence A215945). For more information see comments to A215945. We note that all a(n)/3 and 3^(-1 + floor((n+3)/3))*A(n) = A216034(n) are integers.

Examples

			We have t(1)^4 + t(2)^4 + t(4)^4 = 1035 = (345/11)*(t(1)^2 + t(2)^2 + t(4)^2) and (1 - 4*s(1)/sqrt(3))^4 + (1 + 4*s(2)/sqrt(3))^4 + (1 - 4*s(4)/sqrt(3))^4 = 115. Moreover we get a(2)/a(1) = 31,(36), a(3)/a(1) = 1008,(27), a(4)/a(1) = 32429,(18).
		

References

  • D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the ninth order, (submitted, 2012).
  • R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math. (in press, 2012).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{33,-27,3}, {3,33,1035}, 50]

Formula

a(n) = t(1)^(2*n) + t(2)^(2*n) + t(4)^(2*n) = (-sqrt(3) + 4*s(1))^(2*n) + (sqrt(3) + 4*s(2))^(2*n) + (-sqrt(3) + 4*s(4))^(2*n), where t(j) := tan(2*Pi*j/9) and s(j) := sin(2*Pi*j/9). For the respective sums of odd powers - see A215945.
a(n) = 33*a(n-1) - 27*a(n-2) + 3*a(n-3).
G.f.: 3*(1-22*x+9*x^2)/(1-33*x+27*x^2-3*x^3).
a(n) = cot(Pi/18)^(2*n) + cot(5*Pi/18)^(2*n) + cot(7*Pi/18)^(2*n). - Greg Dresden, Oct 01 2020