A215634
a(n) = - 6*a(n-1) - 9*a(n-2) - 3*a(n-3) with a(0)=3, a(1)=-6, a(2)=18.
Original entry on oeis.org
3, -6, 18, -63, 234, -891, 3429, -13257, 51354, -199098, 772173, -2995218, 11619045, -45073827, 174857211, -678335958, 2631522330, -10208681991, 39603398850, -153636822171, 596016389349, -2312177133105, 8969825761002
Offset: 0
- R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- R. Witula, D. Slota, On modified Chebyshev polynomials, J. Math. Anal. Appl., 324 (2006), 321-343.
- Index entries for linear recurrences with constant coefficients, signature (-6,-9,-3).
Cf.
A215455,
A215635,
A215636,
A215664,
A215885,
A215665,
A215666,
A215829,
A215831,
A215917,
A215919,
A215945,
A216034,
A215948,
A216757.
-
I:=[3,-6,18]; [n le 3 select I[n] else -6*Self(n-1)-9*Self(n-2)-3*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 30 2017
-
LinearRecurrence[{-6,-9,-3}, {3,-6,18}, 50]
CoefficientList[Series[(3 + 12 x + 9 x^2)/(1 + 6 x + 9 x^2 + 3 x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 30 2017 *)
-
Vec((3+12*x+9*x^2)/(1+6*x+9*x^2+3*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
A215636
a(n) = - 12*a(n-1) - 54*a(n-2) - 112*a(n-3) - 105*a(n-4) - 36*a(n-5) - 2*a(n-6) with a(0)=a(1)=a(2)=0, a(3)=-3, a(4)=24, a(5)=-135.
Original entry on oeis.org
0, 0, 0, -3, 24, -135, 660, -3003, 13104, -55689, 232500, -958617, 3916440, -15890355, 64127700, -257698347, 1032023136, -4121456625, 16421256420, -65301500577, 259259758056, -1027901275131, 4070632899300, -16104283594083, 63657906293520, -251447560563465, 992593021410900
Offset: 0
We have X(1)=-6, X(2)=18 and X(3)=-60-3*sqrt(2), which implies the equality: (cos(Pi/24))^6 + (cos(7*Pi/24))^6 + (cos(3*Pi/8))^6 = (60+3*sqrt(2))/64.
- Roman Witula and D. Slota, On modified Chebyshev polynomials, J. Math. Anal. Appl., 324 (2006), 321-343.
- Index entries for linear recurrences with constant coefficients, signature (-12,-54,-112,-105,-36,-2).
Cf.
A215455,
A215634,
A215635,
A215664,
A215885,
A215665,
A215666,
A215829,
A215831,
A215917,
A215919,
A215945,
A216034,
A215948,
A216757.
-
LinearRecurrence[{-12,-54,-112,-105,-36,-2}, {0,0,0,-3,24,-135}, 50]
A215829
a(n) = -3*a(n-1) + 9*a(n-2) + 3*a(n-3), with a(0)=3, a(1)=-3, a(2)=27.
Original entry on oeis.org
3, -3, 27, -99, 531, -2403, 11691, -55107, 263331, -1250883, 5957307, -28339875, 134882739, -641835171, 3054430539, -14535159939, 69169849155, -329162695299, 1566411248475, -7454188455651, 35472778517331, -168806797907427, 803312835011307
Offset: 0
We have k(1)^3 - k(2)^3 + k(4)^3 = -11*sqrt(3).
- D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the nine order, (submitted, 2012).
Cf.
A215945,
A215948,
A216034,
A215455,
A215634,
A215635,
A215636,
A215664,
A215665,
A215666,
A215831,
A215575,
A108716,
A215794,
A215828.
-
LinearRecurrence[{-3, 9, 3}, {3, -3, 27}, 50]
A215945
a(n) = - 3^n*A(2*n+1), where A(n) = 3*A(n-1) + A(n-2) - A(n-3)/3, with A(0)=A(1)=3, A(2)=11.
Original entry on oeis.org
-3, -105, -3387, -108945, -3504051, -112702329, -3624894315, -116589061665, -3749904995427, -120609834867081, -3879226882922139, -124769271310005681, -4013008656895890963, -129072153032843014809, -4151404124161560449739
Offset: 0
We have 35*(t(1) - t(2) + t(3)) = t(1)^3 - t(2)^3 + t(4)^3, t(1)^7 - t(2)^7 + t(4)^7 = -5*81*269*sqrt(3) and t(1)^9 - t(2)^9 + t(4)^9 = -9*389339*sqrt(3).
- D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the ninth order, (submitted, 2012).
- R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math. (in press, 2012).
-
m:=17; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(-3*(1+x)^2/(1-33*x+27*x^2-3*x^3))); // Bruno Berselli, Aug 29 2012
-
I:=[-3, -105, -3387]; [n le 3 select I[n] else 33*Self(n-1)-27*Self(n-2)+3*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Mar 19 2013
-
LinearRecurrence[{33, -27, 3}, {-3, -105, -3387}, 17] (* Bruno Berselli, Aug 29 2012 *)
CoefficientList[Series[-3 (1 + x)^2/(1 - 33 x + 27 x^2 - 3 x^3), {x, 0, 20}], x] (* Vincenzo Librandi, Mar 19 2013 *)
A216034
a(n) = 3^(-1+floor((n+1)/3))*A(n), where A(n) = 3*A(n-1) + A(n-2) - A(n-3)/3 with A(0)=A(1)=3, A(2)=11.
Original entry on oeis.org
1, 1, 11, 35, 115, 1129, 3697, 12105, 118907, 389339, 1274819, 12522481, 41002561, 134255345, 1318783307, 4318113395, 14138868147, 138885370201, 454754601649, 1489010307001, 14626471197755, 47891689912619, 156812530628611, 1540361374197601
Offset: 0
-
i:=24; I:=[3,3,11]; A:=[m le 3 select I[m] else 3*Self(m-1)+Self(m-2)-Self(m-3)/3: m in [1..i]]; [3^(-1+Floor(n/3))*A[n]: n in [1..i]]; // Bruno Berselli, Oct 02 2012
A353410
a(n) = (tan(1*Pi/9))^(2*n) + (tan(2*Pi/9))^(2*n) + (tan(3*Pi/9))^(2*n) + (tan(4*Pi/9))^(2*n).
Original entry on oeis.org
4, 36, 1044, 33300, 1070244, 34420356, 1107069876, 35607151476, 1145248326468, 36835122753252, 1184744167077204, 38105444942929620, 1225602095970073572, 39419576386043222340, 1267869080483029127412, 40779027899804602385460, 1311593714249667915837060, 42185362424185765127267748
Offset: 0
a(1) = tan^2 (Pi/9) + tan^2 (2*Pi/9) + tan^2 (3*Pi/9) + tan^2 (4*Pi/9) = 36.
- Michel Bataille and Li Zhou, A Combinatorial Sum Goes on Tangent, The American Mathematical Monthly, Vol. 112, No. 7 (Aug. - Sep., 2005), Problem 11044, pp. 657-659.
- Index entries for linear recurrences with constant coefficients, signature (36,-126,84,-9).
-
LinearRecurrence[{36, -126, 84, -9}, {4, 36, 1044, 33300}, 18] (* Amiram Eldar, Apr 18 2022 *)
A217336
a(n) = 3^(-1+floor(n/2))*A(n), where A(n) = 3*A(n-1) + A(n-2) - A(n-3)/3 with A(0)=A(1)=3, A(2)=11.
Original entry on oeis.org
1, 1, 11, 35, 345, 1129, 11091, 36315, 356721, 1168017, 11473371, 37567443, 369023049, 1208298105, 11869049763, 38863020555, 381749439969, 1249968331809, 12278374244523, 40203278289027, 394914722339385, 1293075627640713
Offset: 0
Note that A(0)=A(1)=3, a(0)=a(1)=1, A(2)=a(2)=11, A(3)=a(3)=35, A(4)=115, a(4)=345 and A(5) = 1129/3, which implies the equality 3387*sqrt(3) = -t(1)^5 + t(2)^5 - t(4)^5.
- D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the ninth order, (submitted, 2012).
- R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math. (in press, 2012).
Cf.
A215455,
A215634-
A215636,
A215664,
A215885,
A215665,
A215666,
A215829,
A215831,
A215917,
A215919,
A215945,
A216034,
A215948,
A216757.
-
/* By definition: */ i:=22; I:=[3,3,11]; A:=[m le 3 select I[m] else 3*Self(m-1)+Self(m-2)-Self(m-3)/3: m in [1..i]]; [3^(-1+Floor((n-1)/2))*A[n]: n in [1..i]]; // Bruno Berselli, Oct 02 2012
-
LinearRecurrence[{0, 33, 0, -27, 0, 3}, {1, 1, 11, 35, 345, 1129},25] (* Paolo Xausa, Feb 23 2024 *)
Showing 1-7 of 7 results.
Comments