A215991 Primes that are the sum of 25 consecutive primes.
1259, 1361, 2027, 2267, 2633, 3137, 3389, 4057, 5153, 6257, 6553, 7013, 7451, 7901, 9907, 10499, 10799, 10949, 11579, 12401, 14369, 15013, 15329, 17377, 17903, 18251, 18427, 19309, 22441, 24023, 25057, 25229, 26041, 26699, 28111, 29017, 29207, 30707, 32939, 35051, 36583
Offset: 1
Keywords
Links
- Syed Iddi Hasan, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A034962, A034965, A082246, A082251, A127340, A127341, A161612, A215992, A215993, A215994, A215995, A215996, A215997, A215998, A215999, A216000, A216001, A216002, A216003, A216004, A216005, A216006, A216007, A216008, A216009, A216010, A216011, A216012, A216013, A216014, A216015, A216016, A216017, A216018, A216019, A216020.
Programs
-
GAP
P:=Filtered([1..10^4],IsPrime);; Filtered(List([0..250],k->Sum([1..25],i->P[i+k])),IsPrime); # Muniru A Asiru, Feb 11 2018
-
Maple
select(isprime, [seq(add(ithprime(i+k), i=1..25), k=0..250)]); # Muniru A Asiru, Feb 11 2018
-
Mathematica
Select[ListConvolve[Table[1, 25], Prime[Range[500]]], PrimeQ] (* Jean-François Alcover, Jul 01 2018, after Harvey P. Dale *) Select[Total/@Partition[Prime[Range[300]],25,1],PrimeQ] (* Harvey P. Dale, Mar 04 2023 *)
-
PARI
psumprm(m, n)={my(list=List(), s=sum(j=1,m,prime(j)), i=1); while(#list
Andrew Howroyd, Feb 11 2018
Comments