cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216124 Primes which are the nearest integer to the geometric mean of the previous prime and the following prime.

Original entry on oeis.org

3, 5, 7, 23, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393
Offset: 1

Views

Author

César Eliud Lozada, Sep 01 2012

Keywords

Comments

The geometric mean of two primes p and q is sqrt(pq).

Examples

			The prime before 3 is 2 and the prime after 3 is 5. 2 * 5 = 10 and the geometric mean of 2 and 5 is therefore sqrt(10) = 3.16227766..., which rounds to 3. Therefore 3 is in the sequence.
The geometric mean of 7 and 13 is 9.539392... which rounds up to 10, well short of 11, hence 11 is not in the sequence.
		

Crossrefs

Programs

  • Maple
    A := {}: for n from 2 to 1000 do p1 := ithprime(n-1): p := ithprime(n); p2 := ithprime(n+1): if p = round(sqrt(p1*p2)) then A := `union`(A, {p}) end if end do; A := A;
  • Mathematica
    Prime[Select[Range[2, 700], Prime[#] == Round[Sqrt[Prime[# - 1] Prime[# + 1]]] &]] (* Alonso del Arte, Sep 01 2012 *)
    Select[Partition[Prime[Range[750]],3,1],Round[GeometricMean[{#[[1]],#[[3]]}]]==#[[2]]&][[;;,2]] (* Harvey P. Dale, Feb 28 2024 *)
  • PARI
    lista(nn) = forprime (p=2, nn, if (round(sqrt(precprime(p-1)*nextprime(p+1))) == p, print1(p, ", "))); \\ Michel Marcus, Apr 08 2015
    
  • Python
    from math import isqrt
    from itertools import islice
    from sympy import nextprime, prevprime
    def A216124_gen(startvalue=3): # generator of terms >= startvalue
        q = max(3,nextprime(startvalue-1))
        p = prevprime(q)
        r = nextprime(q)
        while True:
            if q == (m:=isqrt(k:=p*r))+(k-m*(m+1)>=1):
                yield q
            p, q, r = q, r, nextprime(r)
    A216124_list = list(islice(A216124_gen(),20)) # Chai Wah Wu, Jun 19 2024

Extensions

More terms from Michel Marcus, Apr 08 2015