A216135 E.g.f. A(x) satisfies: A(x)^A(x) = 1/(1 - x*A(x)^2).
1, 1, 4, 33, 424, 7440, 165846, 4487966, 142930376, 5237697744, 217106129040, 10043789510832, 513016686849624, 28676264198255856, 1741205465305623240, 114124985340571809480, 8030944551164700156096, 603905270121593669417472, 48328182913534662635924544
Offset: 0
Keywords
Examples
E.g.f. A(x) = 1 + x + 4*x^2/2! + 33*x^3/3! + 424*x^4/4! + 7440*x^5/5! +... where A(x)^A(x) = 1 + x + 6*x^2/2! + 60*x^3/3! + 864*x^4/4! + 16360*x^5/5! +... 1/(1-x*A(x)^2) = 1 + x + 6*x^2/2! + 60*x^3/3! + 864*x^4/4! + 16360*x^5/5! +...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..357
Programs
-
Mathematica
Table[Sum[(2*n-k+1)^(k-1)*(-1)^(n-k)*StirlingS1[n,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Sep 17 2013 *)
-
PARI
a(n, m=1)=sum(k=0, n, m*(2*n-k+m)^(k-1)*(-1)^(n-k)*stirling(n, k, 1)); for(n=0,21,print1(a(n),", "))
-
PARI
{a(n, m=1)=sum(k=0, n, m*(2*n-k+m)^(k-1)*polcoeff(prod(j=1, n-1, 1+j*x), n-k))} for(n=0,21,print1(a(n),", "))
-
PARI
{a(n)=local(A=1+x); for(i=0, n, A=exp(-log(1-x*(A^2+x*O(x^n)))/A)); n!*polcoeff(A, n)} for(n=0,21,print1(a(n),", "))
Formula
(1) a(n) = Sum_{k=0..n} (2*n-k+1)^(k-1)* (-1)^(n-k)* Stirling1(n,k).
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then
(2) a(n,m) = Sum_{k=0..n} m*(2*n-k+m)^(k-1) * (-1)^(n-k) *Stirling1(n,k) ;
which is equivalent to the following:
(3) a(n,m) = Sum_{k=0..n} m*(2*n-k+m)^(k-1) * {[x^(n-k)] Product_{j=1..n-1} (1+j*x)};
(4) a(n,m) = n!*Sum_{k=0..n} m*(2*n-k+m)^(k-1) * {[x^(n-k)] (-log(1-x)/x)^k/k!}.
Limit n->infinity a(n)^(1/n)/n = exp(2*(1-r)/(r-2))*(2-r+exp(r/(2-r))) = 1.7802115440907..., where r = 0.655269699533064... is the root of the equation exp(r/(2-r)) = ((r-2)/r)*(r + LambertW(-1,-r*exp(-r))). - Vaclav Kotesovec, Sep 17 2013
a(n) ~ s*sqrt((s^s-1)/(2*(s^s-1)*(2*s^s-1)-s)) * n^(n-1) * (s^(2+s)/(s^s-1))^n / exp(n), where s = 1.627893875694537903318580987... is the root of the equation (1+log(s))*s = 2*(s^s-1). - Vaclav Kotesovec, Dec 28 2013
Comments