A141209
E.g.f. satisfies A(x)^A(x) = 1/(1 - x*A(x)).
Original entry on oeis.org
1, 1, 2, 9, 64, 620, 7626, 113792, 1997192, 40316544, 920271840, 23438308872, 658947505272, 20270099889624, 677226678369528, 24420959694718680, 945370712175873216, 39103903755819561984, 1721215383181421110848, 80329148928437231089152
Offset: 0
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 64*x^4/4! + 620*x^5/5! +...
-
Table[Sum[(n-k+1)^(k-1)*Abs[StirlingS1[n,k]], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 17 2013 *)
E^((2*r-1)/(1-r))*(1+(1-r)*E^(r/(r-1)))/.FindRoot[E^(r/(1-r))==(r-1)/r*(r+LambertW[-1,-r*E^(-r)]), {r,1/2}, WorkingPrecision->50] (* program for numerical value of the limit n->infinity a(n)^(1/n)/n, Vaclav Kotesovec, Sep 17 2013 *)
-
{a(n)=local(A=1+x);for(i=0,n,A=exp(-log(1-x*(A+O(x^n)))/A));n!*polcoeff(A,n)}
-
{a(n,m=1)=sum(k=0,n,m*(n-k+m)^(k-1)*polcoeff(prod(j=1,n-1,1+j*x),n-k))} \\ Paul D. Hanna, Jul 08 2009
-
{a(n,m=1)=n!*sum(k=0,n,m*(n-k+m)^(k-1)*polcoeff((-log(1-x+x*O(x^n))/x)^k/k!,n-k))} \\ Paul D. Hanna, Jul 08 2009
-
{a(n,m=1)=sum(k=0,n,m*(n-k+m)^(k-1)*(-1)^(n-k)*stirling(n,k,1))} \\ Paul D. Hanna, Jul 08 2009
A349561
E.g.f. satisfies: A(x)^A(x) = 1/(1 - x).
Original entry on oeis.org
1, 1, 0, 3, -8, 100, -834, 11438, -159928, 2762352, -52322160, 1124320032, -26509832040, 686751503568, -19306448087640, 586539826169880, -19131996548499264, 667157522614934016, -24762890955027112128, 974824890777753840576, -40566428716555791936000
Offset: 0
A(x) - 1 = x + 3*x^3/6 - 8*x^4/24 + ... = x + x^3/2 - x^4/3 + ... .
A(x)^A(x) = (1 + (A(x) - 1))^(1 + (A(x) - 1)) = Sum_{k>=0} A005727(k) * (A(x) - 1)^k / k! = 1 + 1 * (x + x^3/2 - x^4/3 + ... )/1! + 2 * (x + x^3/2 - x^4/3 + ... )^2/2! + 3 * (x + x^3/2 - x^4/3 + ... )^3/3! + ... = 1 + x + x^2 + x^3 + ... = 1/(1 - x).
-
Join[{1}, Table[(n-1)! - (-1)^n*Sum[(k-1)^(k-1)*StirlingS1[n, k], {k, 2, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Nov 22 2021 *)
-
a(n) = (-1)^(n-1)*sum(k=0, n, (k-1)^(k-1)*stirling(n, k, 1));
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-sum(k=0, N, (k-1)^(k-1)*log(1-x)^k/k!)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-log(1-x)/lambertw(-log(1-x))))
A216136
E.g.f. A(x) satisfies: A(x)^A(x) = 1/(1 - x*A(x)^3).
Original entry on oeis.org
1, 1, 6, 75, 1456, 38560, 1296786, 52935680, 2542934024, 140557741488, 8787984793440, 613224873661752, 47245653830341176, 3983499665690137944, 364844394810538703256, 36070922050704987248280, 3828821598701561543783616, 434302348322255060713797120
Offset: 0
E.g.f. A(x) = 1 + x + 6*x^2/2! + 75*x^3/3! + 1456*x^4/4! + 38560*x^5/5! +...
where
A(x)^A(x) = 1 + x + 8*x^2/2! + 114*x^3/3! + 2388*x^4/4! + 66480*x^5/5! +...
1/(1-x*A(x)^3) = 1 + x + 8*x^2/2! + 114*x^3/3! + 2388*x^4/4! + 66480*x^5/5! +...
-
Table[Sum[(3*n-k+1)^(k-1)*(-1)^(n-k)*StirlingS1[n,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Sep 17 2013 *)
-
a(n, m=1)=sum(k=0, n, m*(3*n-k+m)^(k-1)*(-1)^(n-k)*stirling(n, k, 1));
for(n=0,21,print1(a(n),", "))
-
{a(n, m=1)=sum(k=0, n, m*(3*n-k+m)^(k-1)*polcoeff(prod(j=1, n-1, 1+j*x), n-k))}
for(n=0,21,print1(a(n),", "))
-
{a(n)=local(A=1+x); for(i=0, n, A=exp(-log(1-x*(A^3+x*O(x^n)))/A)); n!*polcoeff(A, n)}
for(n=0,21,print1(a(n),", "))
A349601
E.g.f. satisfies: A(x) * log(A(x)) = exp(x*A(x)^2) - 1.
Original entry on oeis.org
1, 1, 4, 32, 391, 6462, 134974, 3412187, 101323674, 3457536144, 133333945461, 5734792007584, 272197255745078, 14133109419794601, 796883164532719216, 48489515568651113516, 3167153388603620859695, 221021628292403019655418
Offset: 0
-
Table[Sum[(2*n - k + 1)^(k-1) * StirlingS2[n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 25 2021 *)
-
a(n) = sum(k=0, n, (2*n-k+1)^(k-1)*stirling(n, k, 2));
A229237
E.g.f. A(x) satisfies: A(x)^A(x) = 1/(1 - x*A(x)^4).
Original entry on oeis.org
1, 1, 8, 135, 3544, 126980, 5778606, 319234454, 20755549256, 1552791269232, 131408062049040, 12411898074678432, 1294418444771718168, 147733436055601473168, 18315901821846419101416, 2451257290708213030681080, 352217918432527724627871936, 54082428426583359310449351168
Offset: 0
-
Table[Sum[(4*n-k+1)^(k-1)*(-1)^(n-k)*StirlingS1[n,k],{k,0,n}],{n,0,20}]
p=4; E^(p*(1-r)/(r-p))*(p-r+E^(r/(p-r)))/.FindRoot[E^(r/(p-r))==(r-p)/r*(r+LambertW[-1,-r*E^(-r)]), {r,1/2}, WorkingPrecision->50] (* program for numerical value of the limit n->infinity a(n)^(1/n)/n *)
A349602
E.g.f. satisfies: A(x) * log(A(x)) = 1 - exp(-x*A(x)^2).
Original entry on oeis.org
1, 1, 2, 2, -43, -668, -5908, -1209, 1399400, 37121106, 508366819, -3012861630, -444910083132, -15407930598279, -249403814792546, 5359691081465462, 589889204153846141, 23861630070579997032, 379819221897309026072, -21971010821241361939769
Offset: 0
-
a[n_] := Sum[(-1)^(n - k)*(2*n - k + 1)^(k - 1)*StirlingS2[n, k], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Nov 23 2021 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*(2*n-k+1)^(k-1)*stirling(n, k, 2));
A349600
E.g.f. satisfies: A(x)^A(x) = 1 + x*A(x)^2.
Original entry on oeis.org
1, 1, 2, 3, -20, -320, -2274, 5474, 487432, 8358480, 37944240, -2286868848, -81319780200, -1139790073968, 18382692073032, 1570867988794680, 42704382709868736, 55662087673489920, -49662902468183117760, -2360239974764654675904, -38098700311039336972800
Offset: 0
-
a(n) = sum(k=0, n, (2*n-k+1)^(k-1)*stirling(n, k, 1));
A356972
E.g.f. satisfies log(A(x)) = (exp(x * A(x)^2) - 1) * A(x).
Original entry on oeis.org
1, 1, 8, 128, 3139, 104382, 4393590, 224045271, 13428576766, 925335827928, 72082558060889, 6264277731652096, 600873473776204782, 63059026039778220285, 7187299097301622432156, 884141943373486896560252, 116756337165196381259759707, 16474480747756013055963484442
Offset: 0
-
a(n) = sum(k=0, n, (2*n+k+1)^(k-1)*stirling(n, k, 2));
Showing 1-8 of 8 results.
Comments