A267540 Primes p such that p (mod 3) = p (mod 5).
2, 17, 31, 47, 61, 107, 137, 151, 167, 181, 197, 211, 227, 241, 257, 271, 317, 331, 347, 421, 467, 541, 557, 571, 587, 601, 617, 631, 647, 661, 677, 691, 751, 797, 811, 827, 857, 887, 947, 977, 991, 1021, 1051, 1097, 1171, 1187, 1201, 1217, 1231, 1277, 1291
Offset: 1
Programs
-
Magma
[p: p in PrimesUpTo(2000) | p mod 3 eq p mod 5]; // Vincenzo Librandi, Jan 17 2016
-
Maple
select(isprime, [seq(seq(15*i+j, j= 1..2), i=0..10000)]); # Robert Israel, Jan 17 2016
-
Mathematica
Select[ Prime[ Range[10000]], (Mod[#,3] == Mod[#,5]) &] (* Or *) Select[ Prime[ Range[10000]], 0 < Mod[#,15] < 3 &]
-
PARI
lista(nn) = forprime(p=2, nn, if(p%3 == p%5, print1(p, ", "))); \\ Altug Alkan, Jan 17 2016
Formula
a(n) = 1/2*((-1)^n*(3*(-1)^n*(10n+81)-1)) with (1
G.f.: (x*(-14x^6-32x^5+16x^4+30x^3-x+14)+17)/((x-1)^2*(x+1)) generates a(2)...a(16), (0<=x<15).
G.f.: (x*(x*(30x*(-2x^4-x^3+x+2)-301)+14)+317)/((x-1)^2*(x+1)) generates a(17)...a(32), (0<=x<16).
Extensions
More terms from Vincenzo Librandi, Jan 17 2016
A267550 Primes p such that p (mod 3) = p (mod 5) = p (mod 7).
2, 107, 211, 317, 421, 631, 947, 1051, 1367, 1471, 1787, 1997, 2207, 2311, 2417, 2521, 2731, 2837, 3257, 3361, 3467, 3571, 3677, 4201, 4517, 4621, 4831, 4937, 5147, 5881, 5987, 6091, 6197, 6301, 6827, 7247, 7351, 7457, 7561, 7877, 8087, 8191, 8297, 8821, 9137, 9241, 9661, 9767, 9871, 10501
Offset: 1
Comments
Or primes p such that p (mod 105) = {1, 2}.
In terms a(4227)...a(4246) their terminal digits alternate: 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(10000) | p mod 3 eq p mod 5 and p mod 5 eq p mod 7]; // Vincenzo Librandi, Jan 17 2016
-
Mathematica
Select[ Prime[ Range[10000]], (Mod[#,3] == Mod[#,5] == Mod[#,7]) &](*Or*) Select[ Prime[ Range[10000]], 0 < Mod[#,105] < 3 &] Select[Prime[Range[10000]],Length[Union[Mod[#,{3,5,7}]]]==1&] (* Harvey P. Dale, Oct 11 2019 *)
-
PARI
lista(nn) = forprime(p=2, nn, if(p%3 == p%5 && p%5 == p%7, print1(p, ", "))); \\ Altug Alkan, Jan 25 2016
Extensions
More terms from Vincenzo Librandi, Jan 17 2016
Comments