A216166 Composite numbers and 1 which yield a prime whenever a 3 is inserted anywhere in them (including at the beginning or end).
1, 121, 343, 361, 533, 637, 793, 889, 943, 1183, 3013, 3223, 3353, 3403, 3757, 3827, 3893, 4313, 4543, 4963, 8653, 10423, 14257, 20339, 23083, 23419, 30917, 33031, 33101, 33323, 33433, 33701, 33821, 34333, 34393, 35453, 36437, 36533, 39137, 39247, 42869, 43337
Offset: 1
Examples
3827 is not prime but 38273, 38237, 38327 and 33827 are all primes.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..150
Crossrefs
Programs
-
Magma
[n: n in [1..50000] | not IsPrime(n) and forall{m: t in [0..#Intseq(n)] | IsPrime(m) where m is (Floor(n/10^t)*10+3)*10^t+n mod 10^t}]; // Bruno Berselli, Sep 03 2012
-
Maple
with(numtheory); A216166:=proc(q,x) local a,b,c,i,n,ok; for n from 1 to q do if not isprime(n) then a:=n; b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od; a:=n; ok:=1; for i from 0 to b do c:=a+9*10^i*trunc(a/10^i)+10^i*x; if not isprime(c) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A216166(1000,3);
-
Mathematica
ap3Q[n_]:=CompositeQ[n]&&AllTrue[FromDigits/@Table[Insert[ IntegerDigits[ n],3,k],{k,IntegerLength[n]+1}],PrimeQ]; Join[{1},Select[Range[ 44000], ap3Q]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 25 2020 *)