A216173 Number of all possible tetrahedra of any size and orientation, formed when intersecting the original regular tetrahedron by planes parallel to its sides and dividing its edges into n equal parts.
1, 5, 16, 39, 80, 147, 249, 396, 600, 874, 1232, 1690, 2265, 2975, 3840, 4881, 6120, 7581, 9289, 11270, 13552, 16164, 19136, 22500, 26289, 30537, 35280, 40555, 46400, 52855, 59961, 67760, 76296, 85614, 95760, 106782, 118729, 131651, 145600, 160629, 176792
Offset: 1
Examples
For n=9 the number of the tetrahedra of any orientation (those with the same orientation as the original one plus those with reverse orientation) is the total of the number of each size (counted from the smallest size upwards): t(9)+t(7)=165+84=249, t(8)+t(4)=120+20=140, t(7)+t(1)=84+1=85, t(6)=56, t(5)=35, t(4)=20, t(3)=10, t(2)=4 and t(1)=1, the total being a(9)=600, where t(n) denotes the tetrahedral number A000292(n).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,5,-5,6,-4,1).
Programs
-
Magma
I:=[1, 5, 16, 39, 80, 147, 249]; [n le 7 select I[n] else 4*Self(n-1)-6*Self(n-2)+5*Self(n-3)-5*Self(n-4)+6*Self(n-5)-4*Self(n-6)+Self(n-7): n in [1..50]]; // Vincenzo Librandi, Sep 12 2012
-
Mathematica
Table[(1/18) (1 - (-1)^Mod[n, 3] + 3 n + 7 n^2 + 5 n^3 + n^4), {n, 50}] CoefficientList[Series[(1 + x + 2 x^2)/((1 - x)^5 (1 + x + x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 12 2012 *)
Formula
a(n) = (1/18)*(1 - (-1)^(n mod 3) + 3*n + 7*n^2 + 5*n^3 + n^4).
G.f.: x*(1+x+2*x^2)/((1-x)^5*(1+x+x^2)). - Bruno Berselli, Sep 11 2012
Comments