A216182 Riordan array ((1+x)/(1-x)^2, x(1+x)^2/(1-x)^2).
1, 3, 1, 5, 7, 1, 7, 25, 11, 1, 9, 63, 61, 15, 1, 11, 129, 231, 113, 19, 1, 13, 231, 681, 575, 181, 23, 1, 15, 377, 1683, 2241, 1159, 265, 27, 1, 17, 575, 3653, 7183, 5641, 2047, 365, 31, 1, 19, 833, 7183, 19825, 22363, 11969, 3303, 481, 35, 1
Offset: 0
Examples
Triangle begins 1; 3, 1; 5, 7, 1; 7, 25, 11, 1; 9, 63, 61, 15, 1; 11, 129, 231, 113, 19, 1; 13, 231, 681, 575, 181, 23, 1; 15, 377, 1683, 2241, 1159, 265, 27, 1; 17, 575, 3653, 7183, 5641, 2047, 365, 31, 1; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
A216182[n_, k_]:= Hypergeometric2F1[-n +k, -2*k-1, 1, 2]; Table[A216182[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 19 2021 *)
-
Sage
def A216182(n,k): return simplify( hypergeometric([-n+k, -2*k-1], [1], 2) ) flatten([[A216182(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 19 2021
Formula
T(2n, n) = A108448(n+1).
Sum_{k=0..n} T(n,k) = A073717(n+1).
From G. C. Greubel, Nov 19 2021: (Start)
T(n, k) = A008288(n+k+1, 2*k+1).
T(n, k) = hypergeometric([-n+k, -2*k-1], [1], 2). (End)
Comments