cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216182 Riordan array ((1+x)/(1-x)^2, x(1+x)^2/(1-x)^2).

Original entry on oeis.org

1, 3, 1, 5, 7, 1, 7, 25, 11, 1, 9, 63, 61, 15, 1, 11, 129, 231, 113, 19, 1, 13, 231, 681, 575, 181, 23, 1, 15, 377, 1683, 2241, 1159, 265, 27, 1, 17, 575, 3653, 7183, 5641, 2047, 365, 31, 1, 19, 833, 7183, 19825, 22363, 11969, 3303, 481, 35, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 11 2013

Keywords

Comments

Triangle formed of odd-numbered columns of the Delannoy triangle A008288.

Examples

			Triangle begins
   1;
   3,   1;
   5,   7,    1;
   7,  25,   11,    1;
   9,  63,   61,   15,    1;
  11, 129,  231,  113,   19,    1;
  13, 231,  681,  575,  181,   23,   1;
  15, 377, 1683, 2241, 1159,  265,  27,  1;
  17, 575, 3653, 7183, 5641, 2047, 365, 31, 1;
  ...
		

Crossrefs

Cf. (columns:) A005408, A001845, A001847, A001849, A008419.
Cf. Diagonals: A000012, A004767, A060820.
Cf. A008288 (Delannoy triangle), A114123 (even-numbered columns of A008288).

Programs

  • Mathematica
    A216182[n_, k_]:= Hypergeometric2F1[-n +k, -2*k-1, 1, 2];
    Table[A216182[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 19 2021 *)
  • Sage
    def A216182(n,k): return simplify( hypergeometric([-n+k, -2*k-1], [1], 2) )
    flatten([[A216182(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 19 2021

Formula

T(2n, n) = A108448(n+1).
Sum_{k=0..n} T(n,k) = A073717(n+1).
From G. C. Greubel, Nov 19 2021: (Start)
T(n, k) = A008288(n+k+1, 2*k+1).
T(n, k) = hypergeometric([-n+k, -2*k-1], [1], 2). (End)