cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216187 Number of labeled rooted trees on n nodes such that each internal node has an odd number of children.

Original entry on oeis.org

0, 1, 2, 6, 28, 200, 1926, 22512, 306104, 4770432, 84234250, 1663735040, 36320155092, 867963393024, 22535294920334, 631718010255360, 19016907901995376, 611869203759792128, 20954324710009221138, 761015341362413371392, 29214930870257449355660
Offset: 0

Views

Author

Geoffrey Critzer, Mar 11 2013

Keywords

Examples

			a(5) = 200: There are three unlabeled rooted trees of 5 nodes with all internal nodes having an odd number of children. They can be labeled respectively in 20 + 120 + 60 = 200 ways.
  ..o............o............o....
  ..|............|.........../|\...
  ..o............o..........o.o.o..
  ./|\...........|..........|......
  o.o.o..........o..........o......
  ...............|.................
  ...............o.................
  ...............|.................
  ...............o.................
		

Crossrefs

Cf. A036778.

Programs

  • Maple
    a:= n-> n!*coeff(series(RootOf(F=x*(sinh(F)+1), F), x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 12 2013
  • Mathematica
    nn=12; f[x_]:=Sum[a[n]x^n/n!, {n,0,nn}]; s=SolveAlways[0==Series[f[x]-x (Sinh[f[x]]+1), {x,0,nn}], x]; Table[a[n], {n,0,nn}]/.s

Formula

E.g.f. satisfies: F(x) = x*(sinh(F(x))+1).
a(n) ~ sqrt(s/(s-r)) * n^(n-1) / (exp(n) * r^n), where r = 0.482309923717218507261475229723265094762759829863... and s = 1.358310572965774067065006624540704170183889018218... are real roots of the system of equations s = r*(1 + sinh(s)), r*cosh(s) = 1. - Vaclav Kotesovec, Jun 07 2021