A216217 Smallest k such that 6^n - 2*k*3^n - 1 and 6^n - 2*k*3^n + 1 are twin primes or 0 if no solution, n > 1.
1, 2, 3, 0, 3, 11, 33, 9, 26, 6, 34, 138, 51, 19, 33, 246, 66, 31, 167, 73, 13, 716, 138, 148, 138, 339, 447, 41, 131, 41, 9, 178, 778, 337, 543, 2154, 213, 1216, 454, 183, 678, 442, 157, 381, 297, 1476, 54, 1201, 1942, 1566, 572, 3708, 3261, 3672, 1087, 306
Offset: 2
Keywords
Examples
6^2 - 2*1*3^2 - 1 = 17, 17 and 19 twin primes so a(2)=1. 6^3 - 2*2*3^3 - 1 = 107, 107 and 109 twin primes so a(3)=2. 6^4 - 2*3*3^4 - 1 = 809, 809 and 811 twin primes so a(4)=3. 6^5 - 2*k*3^5 - 1 and 6^5 - 2*k*3^5 + 1 for k=1 to 30 have no twin prime solution so a(5)=0.
Links
- Pierre CAMI, Table of n, a(n) for n = 2..400
Crossrefs
Cf. A205322 (similar, but powers of 2).
Programs
-
Mathematica
Table[k = 0; While[k++; p = 6^n - 2*k*3^n - 1; p > 0 && ! (PrimeQ[p] && PrimeQ[p + 2])]; If[p <= 0, 0, k], {n, 2, 50}] (* T. D. Noe, Mar 15 2013 *)
Comments