A216223 Distance from Fibonacci(n) to the next perfect square.
0, 0, 0, 2, 1, 4, 1, 3, 4, 2, 9, 11, 0, 23, 23, 15, 37, 3, 17, 44, 124, 79, 245, 243, 288, 51, 408, 718, 285, 1295, 1529, 1652, 267, 2306, 4434, 1979, 144, 9239, 11840, 4223, 19534, 5283, 29865, 19604, 46492, 45551, 67706, 16008, 92593, 145155, 102696, 276775
Offset: 0
Keywords
Examples
a(5) = 4 since Fibonacci(5)=5 that differs 4 to next square that is 9.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
Programs
-
Maple
a:= n-> (f-> ceil(sqrt(f))^2-f)((<<0|1>, <1|1>>^n)[1, 2]): seq(a(n), n=0..51); # Alois P. Heinz, Oct 26 2022
-
Mathematica
Table[k = Ceiling[Sqrt[Fibonacci[n]]]; k^2 - Fibonacci[n], {n, 0, 60}] (* T. D. Noe, Mar 13 2013 *)
Formula
a(n) = floor(sqrt(Fibonacci(n))+1)^2-Fibonacci(n) if n<>1, 2, 12; else a(n)=0.
Comments