A216231 Fibonacci with priority for primes: a(0)=0, a(1)=1, for n >= 2, a(n) = a(n-1) + a(k), where 0 < k <= n-2 is maximal index such that a(n-1) + a(k) is prime. If there is no such k, then a(n) = a(n-1) + a(n-2).
0, 1, 1, 2, 3, 5, 7, 12, 19, 31, 43, 74, 79, 153, 227, 239, 313, 552, 631, 643, 1274, 1427, 1979, 3253, 5232, 7211, 7213, 14424, 14737, 15289, 20521, 20533, 41054, 41281, 82335, 83609, 83621, 88853, 90127, 104551, 194678, 201889, 207121, 212353, 226777, 226789
Offset: 0
Keywords
Links
- Peter J. C. Moses, Table of n, a(n) for n = 0..9999
Crossrefs
Cf. A000045.
Programs
-
Maple
a:= proc(n) option remember; local k; if n<2 then n else for k from n-2 to 1 by -1 while not isprime(a(n-1) +a(k)) do od; a(n-1) +a(`if`(k=0, n-2, k)) fi end: seq(a(n), n=0..100); # Alois P. Heinz, Mar 14 2013
-
Mathematica
a216231[0]:=0; a216231[1]:=1; a216231[n_]:=a216231[n]= Module[{k},(k=NestWhile[#-1&,n-1,(#>1)&&!PrimeQ[a216231[n-1]+a216231[#]]&]; If[k==1,k=n-2]);a216231[n-1]+a216231[k]]; Table[a216231[n],{n,0,100}] (* Peter J. C. Moses, Mar 14 2013 *)
Comments